User Manual

Elta⁰ R 45, Elta⁰ R 55, Elta⁰ R 50 Routine Total Stations

1 Introduction	Dear Customer	1-2
	The System Philosophy	1-3
	Important Notes	1-4
2 Elta® R -	1 Instrument Description	
The Routine Total	Hardware Overview	
Stations	The Routine Total Stations Elta® R	2-3
	2 Operation	
	Software Overview	
	The Keyboard	
	The Basic Concept of the Menu	
	Use of this Manual	2-7
	3 Safety Notes	0.0
	Risks in Use	
	Attention	2-10
3 First Steps	1 Before Measurement	
	Set-Up and Coarse Centring	
	Levelling and Fine Centring	
	Telescope Focusing	
	Switching the Instrument on	3-4
	2 Principles	
	Principles of Display	
	Principles of Input	3-6
	Input of Reflector, Trunnion Axis and	2.7
	Station HeightsInput of Point Number and Code	
	Principles of Distance Measurements	
	Measurements to inaccessible Points	
	3 Presettings	5 11
	Introduction	3-12
	Settings in the Set-Up Menu	
	Frequently used Settings	
	Instructions for Settings	
	4 Measurement in the Start-Up Mei	nu
	Saving the Measured Values	
	Selecting the Measuring Mode	3-22
	Measurement	3-24
	From Power to Data	3-25

4 Coordinates	1 The Menu Guidance	
	Principle	4-2
	Station Point Memory Elta® R	4-4
	Special Features of Elta® R 50	4-4
	2 Unknown Station	
	Principle	4-6
	Measurement "Unknown Station"	
	Recording	
	3 Known Station	
	Principle	4-9
	Measurement "Known Station"	4-9
	Orientation using a known Azimuth	
	Orientation using known Coordinates	
	Recording	
	4 Stationing in Elevation	
	Principle	4-13
	Measurement "Stationing in Elevation"	4-13
	Recording	
	5 Polar Points	
	Principle	4-16
	Confirmation of Stationing	4-16
	Measurement "Polar Points"	4-18
	Recording	4-19
	6 Setting Out	
	Principle	4-20
	Confirmation of Stationing	4-20
	Measurement "Setting Out"	
	Setting Out using known nominal	
	Coordinates	4-22
	Setting Out using known Setting Out	
	Parameters	4-23
	Measurement Results	4-24
	Recording	4-25
5 Applications	1 The Menu Guidance	
• •	Principle	5-2
	2 Connecting Distance	
	Principle	5-4
	Measurement "Connecting Distance"	
	Polygonal Connecting Distance	
	30	

Radial Connecting Distance	
The Station equals Point P	
The Station equals Point A	
Recording	5-9
3 Object Height	
Principle	
Measurement "Object Height"	5-10
Definition of a Reference Height ZSet	
Measurement beside the Plumb Line	5-12
Recording	5-13
4 Point-to-Line Distance	
Principle	
Measurement "Point-to-Line Distance"	5-14
The Station equals Point A	5-16
The Station equals Point B	5-17
The Station equals Point P	5-17
Recording	5-18
5 Vertical Plane	
Principle	5-19
Measurement "Vertical Plane"	5-19
hSet - Determination of the	
Height Coordinate	5-20
xSet - Definition of the x-Axis	
ySet - Points before or behind the Plane	
The Station equals Point P	5-23
Recording	5-23
6 Orthogonal Lines	
Principle	
Measurement "Orthogonal Lines"	
The Station equals Point A	
The Station equals Point B	
The Station equals Point P	
Recording	5-28
7 Parallel Lines	
Principle	
Measurement "Parallel Lines"	5-29
The Station equals Point A	
The Station equals Point B	
The Station equals Point C	5-33
The Station equals Point P	5-33

6 Data Management

Recording	. 5-34
8 Alignment	
Principle	
Measurement "Alignment"	. 5-35
Recording	
1 Editor	
Calling the EDIT Menu	6-2
Display of Data Lines	
Searching for Data Lines	
Deleting Data Lines	
Entering Data Lines	
2 Data Transfer	0-0
Preparing the Instrument for data transfer.	4.0
PC Terminal Settings	
Data Transmission	
Data Reception	.0-12
	4 12
Introduction	
Description of M5 data format	
Description of Rec 500 data format	. 0-18
Description of R4 and R5 (M5, Rec 500)	/ 20
format of Elta® R	
Defination of type identification	. 6-26
Type identifier-CZ Formats M5, R4, R5 and	/ 2/
Rec500 (Elta R)	
Description of value blocks	
CZ Format ID and address block	
Data output on a printer	. 6-30
4 User Interface	/ 21
Introduction	
What is an interface?	
Hardware interface	. 6-32
5 Remote Control	, ,,,
Introduction	
Xon/Xoff Control	
Rec 500 Software Dialog (Rec 500 Protocol).	
Key Codes and Function Requests	
6 Recording Data Lines	6-41

7 Adjusting and checking	1 Introduction	7-2
	2 V Index / Hz Collimation	7-5
	3 Compensator	7-6
8 Annex	1 Overview Softkeys	8-2
	2 Overview Key Functions	8-6
	3 Geodetic Glossary	8-7
	4 Technical Data	
	Elta® R 45, R 50 and R 55	8-13
	Electromagnetic Compatibility	
	Battery Charger LG 20	
	Charging the Battery	
	5 Formulae and Constants	
	Computational Formulae for	
	Angle Measurements	8-19
	Computational Formulae for	
	Distance Measurements	8-19
	Reduction Formulae	8-20
	Verifying on Calibration Distances	8-22
	Prism and Addition Constants	8-23
	6 Error Messages	8-24
	7 Maintenance and Care	
	Instructions for Maintenance and Care	8-26
	Keeping the Measurement System	
	in the Case	8-27
	8 Extended Temperature Range	
	Using the Instrument in the Low Temp	erature
	Range to -35°C	8-28

1 Dear Customer	1-2
2 The System Philosophy	1-3
3 Important Notes	1-4

Dear Customer

By purchasing an Elta® R Routine Total Station from Carl Zeiss you have opted for a leading-edge product in the field of surveying instruments. We congratulate you on your choice and would like to thank you for the trust placed in our company.

For quite some time, surveying has no longer been limited to the measurement of bearings and distances. Complex measurement systems have been in demand that do not only satisfy ever increasing needs for automatization, but also those involving digital data processing as well as the effectiveness of daily measuring practice. New standards have thus been set regarding technology and operating convenience.

The Elta® R Routine Total Stations are part of a complete range of surveying instruments from Carl Zeiss. Data interchange between all the instruments is ensured by a common data format.

The operating convenience offered by the Elta® R hardware is very high within this group of total stations. The clear graphic display and only 7 keys give the user a wide variety of information for the processing in the field and provide him with valuable aids for achieving high productivity in solving his surveying tasks.

The software meets high standards.

Attention!

Please read the safety notes in chapter 2 carefully before starting up the instrument.

The instrument was manufactured by tested methods and using environmentally compatible quality materials.

The mechanical, optical and electronic functions of the instrument were carefully checked prior to delivery. Should any defects attributable to faulty material or workmanship occur within the warranty period, they will be repaired as a warranty service.

This warranty does not cover defects caused by operator errors, inexpert handling or inappropriate application.

Any further liabilities, for example for indirect damages, cannot be accepted.

User manual: Edition
Cat. No.: 1003.532
Date: June 1998
Software release: V 3.xx

Subject to alterations by the manufacturer for the purposes of further technical development.

	-		
GP .	-1	п	r

The type label and serial number are provided on the left-hand side and under-side of the instrument, respectively. Please note these data and the following infor-mation in your user manual. Always indicate this reference in any inquiries addressed to our dealer, agency or service department:

Instrume	Instrument:			
	Elta® R 45		Elta® R 50	
	Elta® R 55			
Serial nu	ımber:	Soft	tware version	

We would like to wish you every success in completing your work with your Elta® R. If you need any help, we will be glad to be of assistance.

Yours

ZSP Geodetic Systems GmbH Tatzendpromenade 1a D-07745 Jena

Phone: ++49 3641 64-3200 Telefax: ++49 3641 64-3229 E-Mail: surveying@zeiss.de http://www.zeiss.de This chapter gives you an overview of the operation and controls of the instrument as well as the programs which are a special feature of the Elta[®] R Routine Total Stations.

1 Instrument Description	2-2
2 Operation	2-4
·	
2 Cafaki Nata	2.0
3 Safety Notes	2-8

Hardware Overview

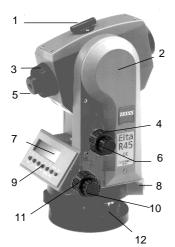


Fig. 1-1: Elta® R 45,

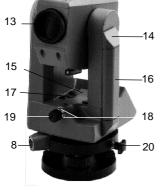


Fig. 1-2: Elta® R, Objective side

1 Sighting collimator

- 2 Mark for trunnion axis height
- 3 Telescope focusing control
- 4 Vertical tangent screw
- 5 Eyepiece
- 6 Vertical clamp
- Display (graphic capabilities 128 x 32 7 pixels)
- 8 Interface
- 9 Keyboard
- 10 Horizontal clamp
- 11 Horizontal tangent screw
- 12 Tribrach screw
- 13 Telescope objective with integrated sun shield
- 14 Battery cassette lock
- 15 Vertical axis level
- 16 Battery
- 17 Circular level
- 18 Adjustment screws for optical plummet
- 19 Optical plummet
- 20 Tribrach clamping screw

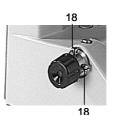


Fig. 1-3: Elta® R, Optical plummet

The Routine Total Stations Elta® R 45, Elta® R 55 and Elta® R 50

The electronic Routine Total Stations as instruments of mean accuracy are not only appropriate for land-measuring by geodesists, but also users on building sites appreciate their uncomplicated handling as well as rapidity, reliability and clearness

in measuring.

Measurements are made easy thanks to menu guidance supported by graphics, instrument software with flexible point identification and

universal data record formats.

The principal features:

Distance measurement by phase comparison method

Measuring range Elta® R 45 up to 1500 m with 1 prism,

Elta® R 55 / R 50 up to 1300 m with 1 prism

Angle measurement Hz and V electronically by increments, quick

initialising,

all common units and angle reference systems

Error compensation Automatic compensation of sighting axis and index

errors

The advantages in operating Display screen with graphic capabilities (128 x 32

pixels),

user-friendly surface, easy familiarisation,

simple handling,

reliable control of all measuring and computing

processes with clear references,

integrated, practical application programs, ergonomic arrangement of controls,

light, compact construction

Quick charging, longer times of measuring

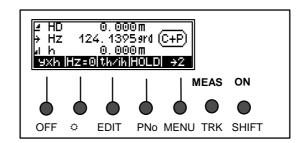
Eco-friendly power supply for about 1000 angle and distance measurements, charging time 1 hour

Data management RS 232 C (V 24) interface as data input and output

In the internal data memory of Elta® R 45 and Elta® R 55, 1900 data lines can be saved.

Software - Overview

Menu (ON+MENU)


Input
1 Addco (addition constant)
2 Scale
3 — Temp (temperature)
4 Pressure
Applications
1 — Connecting distance
2 — Object height
3 Point-to-line distance
4 — Vertical plane
5 — Orthogonal lines
6 Parallel lines
7 —— Alignment
Coordinates
1 — Unknown station
2 — Known station
3 —— Stationing in elevation
4 —— Polar points
5 —— Setting out
Instrument setting
1 — Angles
2 — Distances
3 — V reference
4 — Coo system
5 Coo display
6 — Temperature
7 —— Pressure
8 Switch off
9 Acoustic signal
0 └── Contrast
Interface
0 Record. 5 Position C
1 Format 6 Position P
2 Parity 7 Position I
3 Baud rate 8 T-O Rec.
4 Protocol 9 PC Demo

The Keyboard

Two types of keys:

- Hardkeys
 - direct function ON and MEAS
 - Key in connection with ON (SHIFT)
- Softkey function depending on program, significance explained in display line at the bottom

For operating the Elta® R, only 7 keys are needed.

Functions (Hardkeys)

ON Switching the instrument on and changing over to

hardkey function

(MEAS) Starting a measurement

ON OFF Switching the instrument off

Illumination ON/OFF ON (*)

ON EDIT Calling up the memory and

the Elta® R 45, 55 battery capacity

ON PNo Calling up the input of point number and code

and the Elta® R 50 battery capacity

ON MENU Going to the main menu

ON TRK Starting the tracking function

Softkeys

Overview softkeys Function keys defined by the display in dependence Annex

on the program.

The Basic Concept of the Menu

The total station is able to realise a great variety of functions.

Functions needed directly during the measuring process are accessible through the key functions.


ON MENU

The menu facilitates the access to many other functions.

Having selected the menu, you can go to submenus and you are offered available functions, respectively:

e.g. settings

e.g. measurement programs

Use of this Manual

The manual is divided into 8 main chapters.

The subchapters have not been numbered. Clarity and convenience are provided by a maximum of 3 structural levels, for example:

Chapter

Section

Subsection

Functional text for

calling up programs:

4 Coordinates

3 Stationing in elevation

Mode

Softkeys and their functions

Cross references to other chapters

Small graphics

Coordinates

Coordinates Unknown Station

Recording

The pages are divided into two columns:

Principal text including

- Description of measuring processes and methods
 - instrument operation and keys
 - Elta® R display / graphics
 - drawings and large graphics
 - tips, warnings and technical information

[™] Tip

for hints, special aspects and tricks

Attention!

for risks or potential problems

Technical Information

for technical background information

Measuring tasks are defined as follows:

given: : given values meas.: : measured values

requ.: : required/computed values

You will find a list of terms in the annex (Geodetic Glossary).

Risks in Use

Instruments and original accessories from Carl Zeiss have to be used only for the intended purpose. Read the manual carefully before the first use and keep it with the instrument so that it will be ready to hand at any time. Be sure to comply with the safety notes.

Attention !

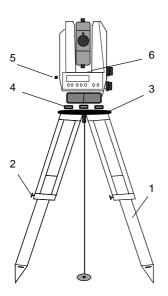
- Don't make any changes or repairs on the instrument and accessories. This is allowed only to the manufacturer or to specialist staff authorised by the same.
- Only the service team or authorised specialist staff are allowed to open the instrument and accessories.
- Do not point the telescope directly at the sun.
- Do not use the instrument and accessories in rooms with danger of explosion.
- Use the instrument only within the operative ranges and conditions defined in the chapter of technical data.
- Do not operate the battery charger in humid or wet conditions (risk of electrical shock). Make sure the voltage setting is identical on the battery charger and voltage source. Do not use instruments while they are wet.

Attention!

- Take the necessary precautions at your measuring site in the field, note the relevant traffic rules.
- Check that the instrument has been correctly set up and the accessories are properly secured.
- Limit the time of working when it is raining, cover the instrument with the protective hood during breaks.
- After taking the instrument out of the case, fix it immediately to the tripod with the retaining screw. Do never leave it unfastened on the tripod plate. After loosening the retaining screw again, put the instrument immediately back into the case.
- Prior to starting operation, allow sufficient time for the instrument to adjust to the ambient temperature.
- Tread the tripod legs sufficiently down in the ground in order to keep the instrument in stable position and to avoid its turning over in case of wind pressure.
- Check your instrument at regular intervals in order to avoid faulty measurements, especially after it has been subjected to shock or heavy punishment.
- Remove the battery in case of being discharged or for a longer stop period of the instrument. Recharge the batteries with the LG 20.
- Properly dispose of the batteries and equipment taking into account the applicable national regulations.

Attention

d Attention !


- •The mains cable and plugs of accessories have to be in perfect condition.
- When working with the tachymeter rod near to electrical installations (for example electric railways, aerial lines, transmitting stations and others), there is acute danger to life, independent of the rod material. Inform in these cases the relevant and authorised security offices and follow their instructions. Keep sufficient distance to the electrical installations.
- Avoid surveying during thunderstorms because of lightning danger.

The first steps cover up the set-up of the instrument, including the explanation of basic inputs and the necessary presettings.

After having set the parameters for saving and entered the point information, you can measure in the start-up menu.

1 Before Measurement	3-2
2 Principles	3-5
3 Presettings	3-12
4 Measuring in the Start-up Menu	3-22
5 From Power to Data	3-25

Set-Up and Coarse Centring

In order to guarantee the stability of measurement we recommend the use of a **Zeiss S27** Tripod.

Set-up:

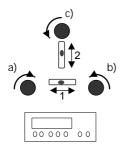
Extend the tripod legs (1) to a comfortable height of observation and fix them using the tripod locking screws (2). Screw the instrument centrally to the tripod head plate (3). The tribrach screws (4) should be in mid-position.

Coarse Centring:

Set up the tripod roughly above the station point (ground mark), the tripod head plate (3) should be approximately horizontal.

Centre the circular mark of the optical plummet (5) above the ground mark using the tribrach screws (4)

To focus the circle: Turn the eyepiece.


To focus the ground mark: Draw out or push in the eyepiece of the optical plummet.

Levelling and Fine Centring

Coarse Levelling:

Level the circular bubble (6) by adjusting the length of the tripod legs (1).

Precision Levelling:

Align the control unit parallel with the imaginary connecting line between two tribrach screws. Level the instrument by turning the tribrach screws a) and b) in opposite directions. Turn the instrument by 100 gon in Hz and level instrument with tribrach screw c). For checking, turn the instrument round the vertical axis. After that, check the residual inclination by turning the instrument in both diametral positions of (1) and (2). Take the mean of deviation from center point of level and adjust, if necessary.

Precision Centring:

Shift the tribrach on the tripod head plate until the image of the ground mark is in the centre of the circular mark of the optical plummet; repeat the levelling various times if necessary.

Telescope Focusing

Focusing the Crosslines:

Sight a bright, evenly coloured surface and turn the telescope eyepiece until the line pattern is sharply defined.

Attention!

Sighting of the sun or strong light sources must by all means be avoided. This may cause irreparable damage to your eyes.

Focusing the target point:

Turn the telescope focusing control until the target point is sharply defined.

Check the telescope parallax: If you move your head slightly whilst looking through the eyepiece, there must be no relative movement between the crosslines and the target; otherwise, refocus the crosslines as above.

Switching the Instrument on

(ON)

Press key

Additionally to the company logo, the number of the software version (important for future updates) and the values last set for:

- addition constant
- scale
- temperature
- air pressure are displayed briefly.

Tilting the telescope on the

The capturing of the zero point is acknowledged with an acoustic signal.

trunnion axis and rotating the instrument on the vertical axis.

Switching the instrument off by pressing the keys

ON + OFF

simultaneously.

☞ Tip

The compensator is automatically activated when the instrument is switched on.

If levelling of the instrument is insufficient, the digits after the decimal point in the displayed angle readings are replaced by dashes.

Principles of Display

The information

- point code,
- **p**oint number and
- measured / computed values

is displayed on two pages.

Toggling between the pages:

→1

to page 1

→2

to page 2

Display page 2:

Display page 1:

Tip

The fields at the bottom of the display are related to the functions of the keys situated below the display.

They indicate the next possible settings - do not mix it up with the current setting.

Principles of Input

Additionally to the setting of predefinitions - as described further down in this chapter - you will have to enter data continually during the measuring process.

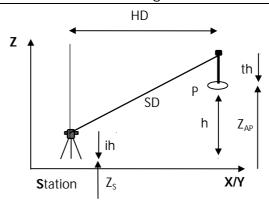
These entries are

- the constantly changing instrument, station and reflector heights and
- coordinates of stations or other known backsight points.

Editor

Data Management

The manual input of coordinates is described in **Chapter 6 Data Management**.


Data Transfer

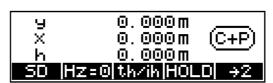
Data Management

If available, it is useful to transfer the values directly from a PC instead of entering them manually.

Input of Reflector, Trunnion Axis and Station Heights

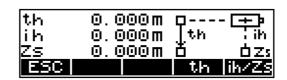
The input of the values of reflector height (th), instrument height (ih) and station height (Zs) allows you to measure with absolute heights already in the initial menu. If these values have not been entered, only relative height differences will appear in the display (memory).

Tip


At this point, it would be convenient to use the program of chapter 4.4 **Coordinates Stationing in Elevation**. The station height is determined by measuring to another visible backsight point.

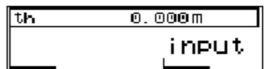
on display page 1 only:

in measuring modes **HD** and **yxh** only



th Reflector height

ih/Zs Instrument and station heights

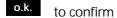


2 Principles

Input of the reflector height:

th 0.000 m reflector height

to confirm the old (in this case 0)




to enter a value

- and
- to go to the desired position in the display

to browse through digits


Presentation of the current position for input in negative type.

Editor **Data Management**

to enter values (compare input of th)

ESC to quit the input routine

Input of the instrument height / station height

Input of Point Number and Code

signalises the possibility to enter point number and code.

← and

to go to the desired digit of point number and code

+ and

to browse through the existing character set

The entered values will be used in the next measurement.

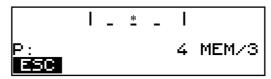
C 5-digit point code, alphanumeric notation

P 12-digit point number with the special characters #, -, . . .numeric notation

The toggling between point number and code is realised continuously.

For fast browsing, keep the respective key depressed.

After the measurement, the point number is incremented by one unit, the code remains invariable until being modified by the user.


In the application and coordinate programs, the code is provided with non-varying characters (A,B,..). In this case, it is not possible to enter the code.

Principles of Distance Measurements

Single measurement

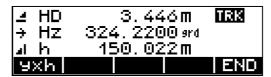
(MEAS)

The intensity of the receiving signal can be assessed with the bar graph. The more to the right the stars are presented, the better is the returning signal.

The distance measurement can be cancelled with the softkey ESC.

Presettings First Steps

The slope distances and derived values are corrected with regard to the influences of earth curvature / refraction. Additionally, a correction of atmospheric influences (temperature and pressure) is applied.


The correction is zero with T = 20°C and P = 944 hPa.

Distance tracking (continuous measurement of the distance) The measuring mode can also be changed during the tracking measurement. For recording data during the tracking measurement use key MEAS.


END

to finish the measurement

Measurements to inaccessible Points

The prism used for the distance measurement cannot be stationed on the desired point P.

Sight towards the point P and trigger the measurement. Then, sight the prism stationed on the auxiliary point H.

Pay attention to the condition of equidistance S-P = S-H.

If data recording is activated, <u>only</u> a data line indicating the angle to P and the distance to H is saved.

Naturally, the angle and distance to H are displayed after the measurement, being the angle value continuously updated in the Elta® R display.

Introduction

The required presettings are to be subdivided into three groups:

Settings in the Start-up Menu

- Specify measuring units for angle and distance Short-time setting of V angle in percent
- Activating and deactivating the compensator
- Orientation of Hz circle

Frequently used Settings

- Input of pressure and temperature
- Input of scale and addition constant

Rarely used Set Instructions

- Display mode for angle and distance
- Vertical reference system
- System of coordinates
- Display of coordinates
- Measuring units of temperature, pressure
- Switching the instrument automatically off
- Switching the acoustic signal on and off
- Regulation of display contrast and brightness of crossline illumination

Settings in the Set-Up Menu

Setting the measuring units of angle and distance

to set with

F1 the distance

F2 the angle:

m meters

ft feet

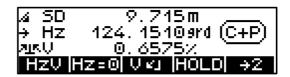
gon grades

deg degrees, decimal division or

DMS degrees, sexagesimal division

mil mils

Display page 2:



Attention!

If the mode is changed after the measurement, the values will be converted and displayed in the new mode, but saved in this form only after the next measurement.

Display page 1

to toggle quickly between angle in percent / defined measuring unit

Activating and deactivating the

compensator

Display page 2:

CHCK to go to the menu

Comp

Adjusting and checking

c-on to deactivate the compensator function

c-off to activate the compensator function

If recording is activated, an information line will be saved indicating compensator function on or off.

d Attention !

If the compensator is out of its working range and the function is activated, the digits after the decimal point in the angle readings are replaced by dashes. In this case, the instrument is not sufficiently levelled and a remote release from a PC is not admitted.

Orientation of Hz circle

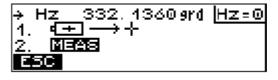
Aim: Hz = 0

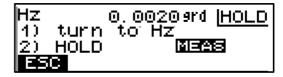
Hz=0

Sight target

MEAS

Aim: Hz = xxx,xxx

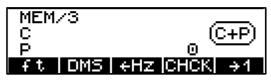

HOLD


Turn the instrument to the desired Hz circle value

MEAS

Sight target

(MEAS)



Aim: Change counting direction

→Hz Measurement clockwise

←Hz Measurement anticlockwise

Display page 2:

d Attention !

The set counting direction is only valid in the start-up menu.

After the connection and in all programs, the Hz counting direction is always set clockwise.

Frequently used Settings

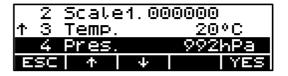
Alteration of pressure, temperature, scale and addition constant

ON MENU

1 Input

and

to go to the desired menu point


o.k. to confirm

+ and

to alter the addition constant (scale, temperature and pressure) step by step

o.k. to confirm

Tip

For the first starting, only temperature and pressure are entered.

If a prism with another prism constant than -35 mm should be used permanently, also this setting should be realised immediately. (For calculating the constant see annex.)

Formulae and constants

Annex

Range of values

Instructions for Settings

ON (MENU)

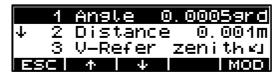
4 Setting the instrument

to go to

and

to select the menu point

MOD


to change setting

to quit menus

and

to quit setting / confirm change

Angle and distance display

Possibilities:

Angle

0,005-0,001-0,0005 (Elta® R 50 and Elta® R 55) grad

grad 0,005-0,001-0,0002 (Elta® R 45)

DMS

10" - 5" - 1" 0,005° - 0,001° - 0,0005° deg

mil

Distance

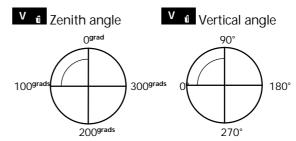
0,01-0,005-0,001 m 0,02-0,01-0,001

Attention!

The defined presentations of angle and distance are related to the display. Saving is realised with the highest possible precision.

Vertical reference system

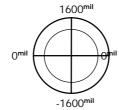
MOD to change setting


to quit menus

and

to quit setting / confirm change

↓ 3 V-Refer zenithば 4 Coord.Syst Y↑→X ↓ 5 Coord.Displ. Y,X ESC ↑ ↓


V reference systems:

Examples

- 1: Zenith angle unit 400 grads
- 2: Vertical angle unit 360°

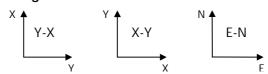
Examples

3: Height angle unit 6400 mil

Tip

The setting of the measuring unit % is done in the set-up menu!

to change setting


to quit menus

and

System of coordinates / display of coordinates:

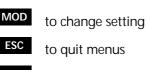
Assignment of coordinates:

Indication sequence: Y-X / X-Y E-N / N-E

d Attention !

When the assignment of coordinates is changed, the question for further use of the internal station coordinates appears in the display, calling the user 's attention to a possible source of errors.

Measuring units for pressure / temperature:



Possibilities:

Temperature °C degrees centigrade °F degrees Fahrenheit

Pressure hPa hectopascal (or millibar)

Torr inHg

to quit setting / confirm change

to change setting

to quit menus

to quit setting / confirm change

and

3 Presettings

Switching the instrument off / acoustic signal

Possibilities:

Switching off 10 min - 30 min - OFF

Acoustic signal On - OFF

[™] Tip

Before the instrument will be switched off automatically, a warning appears indicating that the instrument will be switched off within one minute. This process can be interrupted by pressing any key.

Regulation

Display contrast / illumination of crosslines:

Possibilities:

Contrast (illumination is not switched on)

With wod you can regulate the display contrast stepwise

Illumination of crosslines change brightness (illumination on) stepwise

Tip

The blinking symbol * on the top right of the display signalises that the illumination is switched on.

For regulating the illumination, cover the objective opening with the hand.

~ IIP

to change setting
to quit menus

and

to quit setting / confirm change


Saving the Measured Values

ON + MENU

5 Setting Interface

YES

to go to the menu

MOD

to toggle between MEM/1, MEM/2, MEM/3 V24/1, V24/2, V24/3 OFF

ESC

to return to the higher-order menu

MEM/x - internal saving (only Elta® R 45, 55)

V24/x - external saving through RS232 interface

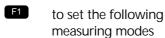
Off - no saving

- 1 saving of measured values
- 2 saving of computed values
- **3** 1 and 2

Record data lines

Data Management

The detailed depiction concerning the question of which values are saved with which type identifiers and with which recording selection you can find in the chapter Data Management.

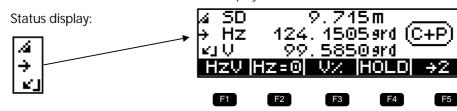


Attention !

In connection with the selection of saving, the selection of the measuring mode is decisive for:

Which results are to be displayed? Which values are to be saved?

Selecting the Measuring Mode (presentation of the results at the display)

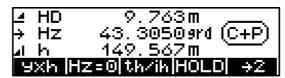


Display page 1:

Tip

In the display of softkey 1, always the next selectable measuring mode appears.

SD: Display of the real measured values


HzV: Display in the theodolite mode

Only for alignments and for setting out right angles, not for distance measurements

HD: Display of the reduced distance and the height difference

Display of the calculated values

yxh: Display of the local rectangular coordinates

Measurement in the local system with station y=x=0

The input of Zs,ih and th allows measurements with absolute heights.

[™] Tip

The measuring modes can be changed at any time and the results will be displayed immediately in the selected measuring mode, but not, though, another recording. All following measurements are displayed and recorded in the newly selected mode.

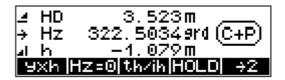
[™] Tip

In all measuring modes, the angle reading is updated continually.

The distance or coordinates are updated only after the next measurement.

Measurement

After entering and defining all parameters required you can carry out the measurement.


MEAS

etc. Measurement to further points

ON + PNo

Input point number and code

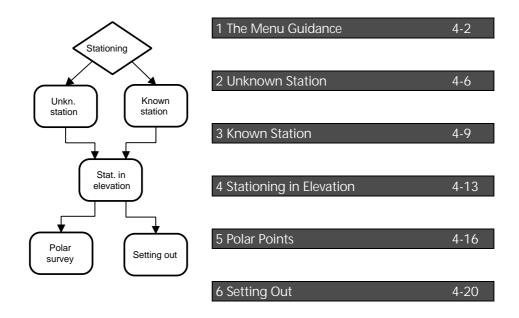
(MEAS)

[™] Tip


After the measurement, the flush right point number is incremented by one unit within the number of digits displayed up to the special character (no figure) to the left of it. (According to this picture, counting goes only up to 9, then it will begin again with "0".)

Measurements in the modes

HzV and SD are realised without entering and recording local or global heights


Display with absolute heights, with the heights Zs, ih and th entered

The basic requirement for a measurement in a system of coordinates is a stationing within this system. That means, that the position and height of the instrument are determined by measuring to known backsight points.

In the case of an unknown station, the scale and the orientation of the Hz circle in azimuth direction are computed additionally to the station coordinates. In the case of a known station, only the scale and the orientation of the Hz circle in azimuth direction are computed.

After the stationing, the actual measurements - that means setting out and polar points - are possible within this system of coordinates.

The guidance through the menu is very easy to understand and based on a unique schema for all programs.

Principle

2 Unknown station

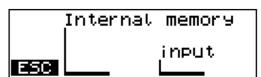
After calling the respective program, a graphics appears with a detailed explanation of the program.

A and B are backsight points with known coordinates and S is the station the coordinates of which are to be calculated.

CHCK

Adjusting and Checking

to call point A


The function of adjusting and checking is required for measurements to be carried out without/with compensator or for checking the adjustment of the instrument.

Principles
First steps

Editor

Data management

Coordinates are to be entered

- to continue by calling point B
- to return to the higher-order menu
- to repeat point A if required

If A has been calculated, measured, defined as station, the symbol for A is filled.

Attention !

If errors or confusions should occur whilst measuring to the points, the measurement to single points can be repeated immediately.

ON + PNo

to enter point number and code

MEAS to trigger measurement

Tip

Prior to each measurement with MEAS it is possible to enter a point number and a code for the point to be measured.

In the stationing programs, the codes (A, B, S) have been invariably set. Point numbers can be entered.

The point number is incremented automatically by 1.

The code that has been set is saved with every measurement until being modified by the user.

In the setting-out program, the possibility to measure is indicated additionally by the SEAS symbol in the display

	0.005 =	
di do	0.005m	
lac 💮	0.000m	
dr	0.005m	MEAS
ESC	Test →	o.k.

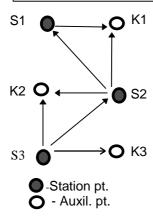
Station Point Memory Elta® R

In a non-volatile instrument memory, the following data are retained after switching the instrument off and overwritten with every new determination:

Station coordinates Y,X,Z Instrument height ich Reflector height th Scale m Orientation Om

The coordinates of the station point are calculated or entered by means of the coordination programs.

During the following operations (setting-out / polar points), the user can access this memory at the respective parts of the program and does not have to enter the values again.


After having changed the station, these values have to be calculated or again entered in the course of the program.

Special Features of Elta® R 50

The Elta® R 50 (the instrument is not fitted out with a data memory) has a memory location for another single point (coor-memory) containing the coordinates of this point (Y;X;Z) in a non-volatile form.

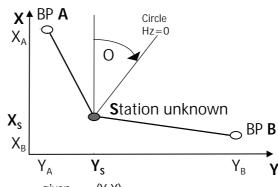
This memory location permits a simple transmission of coordinates (stationing with "unknown station") with the Elta® R 50 and spares the user the trouble to take the coordinates down or to enter them twice.

Elta® R Principle of transmission of coordinates "unknown station"

Window of the Elta® R 50 when calling coordinates

Method:

The station coordinates S1 are known or have been calculated by means of a coordinate program. The coordinates of point K1 will be calculated with the program "polar points" and saved in the "coormemory" with CHEM.


After placing the instrument on S2, the coordinates of the points S1 (last station) and K1 (coor-memory) are called with the stationing program "unknown station" and used for determining the coordinates of S2.

Now, the coordinates of the point K2 can be calculated with the program "polar points" and stored in the "coor-memory". After changing the position of the instrument to S3, the coordinates of this point will be calculated in analogy to station \$2

3 Coordinates

1 Unknown Station

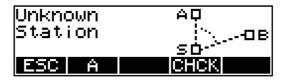
If it is <u>not</u> possible to occupy a point with a <u>known</u> <u>position</u> in order to sight the points to be surveyed or set out, a free stationing can be carried out.

given: $(Y,X)_{A,B}$

meas.: : (SD,Hz,V)_{S-A, S-B}

requ.: $(Y,X)_s$, Om, m

By measuring to 2 known \underline{B} acksight \underline{P} oints (A, B), the instrument will calculate the station coordinates X_s , Y_s , the circle orientation Om and the scale m.

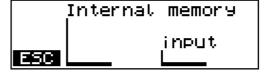

Measurement "Unknown Station"

A to select BP A

CHCK

Adjusting and checking

to quit the program



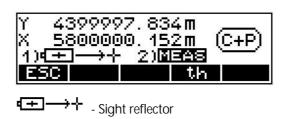
Selecting the coordinates of BP A

Principles
First steps

Editor

Data management

to enter data for BP A


ON₊ PNo

Point number of BP A to be changed?

MEAS to measure to BP A

to select BP B

A Measurement to BP A to be repeated?

The operational steps for BP B are now carried out in analogy to BP A.

After completing the measurement to A and B:

ON + PNo
to enter the point
number of the
station

to accept the result.
Continuation with
stationing in
elevation,
polar points or
setting out

to quit the measurement

Display of results

2 Unknown Station

new

to accept all results

old

to transfer coordinates accepting an old scale

....

Inpt to transfer

coordinates entering any scale

Rept

to repeat the entire calculation

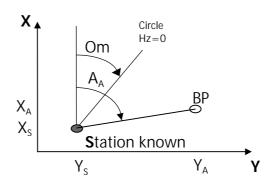
old new scale0.999739 1.000847 Rept old Inp new

Recording

Presettings First steps

If recording is activated, the following lines are saved in dependence on the settings:

Designation of the mode


Point numbers and code

Y,X Coordinates of backsight point A SD,Hz,V Readings for backsight point A Y,X Coordinates of backsight point B SD,Hz,V Readings for backsight point B Y,X Coordinates of station point m,Om Scale and circle orientation

3 Coordinates

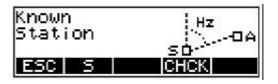
2 Known Station

If it is possible to occupy a point with a known position in order to sight the points to be surveyed or set out, a stationing on a known point can be carried out.

given: $(Y,X)_{S,A}$

meas.: $(SD,Hz)_{S-A,}$ or $(Hz,V)_{S-A}$ requ.: : Om , m or Om

By measuring to a known $\underline{\mathbf{B}}$ acksight $\underline{\mathbf{P}}$ oint \mathbf{A} , the instrument will calculate the circle orientation \mathbf{Om} and the scale \mathbf{m} .

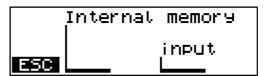

Measurement "Known Station"

s to call station S

CHCK

Adjusting and checking

to quit the program



Selecting the coordinates of station S

Principles
First steps

Editor

Data management

After defining S:

There are two ways to calculate the orientation.

Hz see below

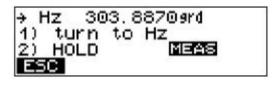
xx page 4-11

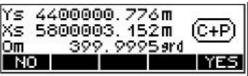
s to repeat station S

Orientation using a known Azimuth

The orientation using a known azimuth will be selected if the bearing angle between the station and the backsight point is known (for example calculated from coordinates) and a distance measurement to the backsight point is impossible.

to set the required direction by turning the instrument


(MEAS) to clamp the set direction


w to sight the known point

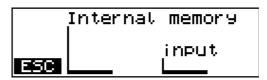
MEAS allocation is completed

to confirm, record, quit the program

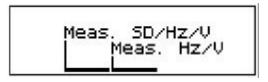
to reject, new start

Display of results and recording

Orientation using known Coordinates


This orientation method will be used if the coordinates of the backsight point are known.

Selecting the coordinates of BP A

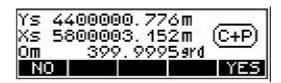

Principles
First steps

Editor

Data management

SD/Hz/V
Distance and bearing measurement Hz/V
Bearing measurement

ON + PNo


Point number of BP A to be changed?

MEAS to BP A

to confirm the orientation, continuation

to reject the orientation, new start

new to accept the new scale

to transfer the orientation accepting an old

scale

to transfer the orientation entering any scale

Rept to repeat the calculation

old new scale0.9997391.000847 Rept old Inp new

Display of results and recording

Recording

Presettings
First steps

If recording is activated, the following lines are saved in dependence on the settings:

Designation of the mode

Point numbers and code

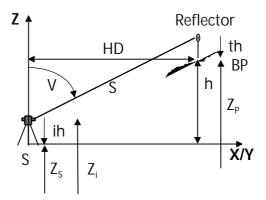
Y,X Coordinates of station point

Y,X Coordinates of backsight point A

SD,Hz,V Readings for backsight point A

according to selection

m,Om Scale and circle orientation


according to selection

3 Stationing

3 Stationing in elevation

Stationing in elevation permits the determination of the height above Mean Sea Level independently of planimetric stationing. In programs involving local coordinates, in particular, the absolute height can be included in the measurement.

The stationing in elevation is possible before or after a planimetric stationing.

given.: : Z_P

meas.: $(SD,V)_{S-P}$ ih, th

requ.: $: Z_s$

The station height is determined by measurement to a **B**acksight **P**oint with a known height.

Measurement "Stationing in Elevation"

to go to the input menus

CHCK []

Adjusting and checking

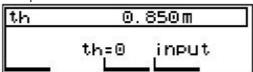
to quit the program

Enter one after another:

Z, ih, th:

Principles
First steps

Editor


Data management

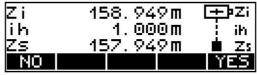
th 0.850 m Confirmation of the old value

<u>th=0</u> Set to zero

Example th:

Sight backsight point

ON + PNo


Point number to be changed?

Z 159.383m 1.◀±+→+ 2.M⊒AS ESC 2.M⊒AS

MEAS

to confirm, record, quit the program

to reject, new start

Display of results and recording

4 Stationing in Elevation

Recording

Presettings
First steps

If recording is activated, the following lines are saved in dependence on the settings:

Designation of the mode

Point numbers and code

Z

th Reflector height at backsight point

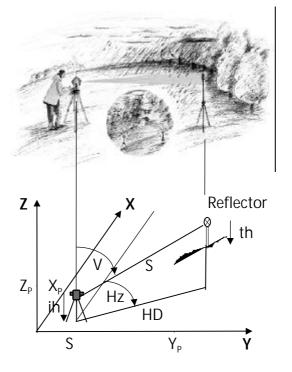
(only if changed)

ih Instrument height (only if changed)

Height of backsight point

SD, Hz, V Readings for backsight point

Zs New station height


3 Coordinates

4 Polar Points

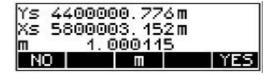
Determination of the coordinates and heights of new points by distance and direction measurements.

The coordinates can be computed in a higher-order system of coordinates.

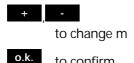
Local coordinates can be determined in the standard measurement menu.

given.: $(Y,X,Z)_{,S}$, Om, m

meas.: : (SD,Hz,V)_{S-P}

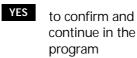

requ.: $(Y,X,Z)_P$

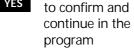
Confirmation of Stationing

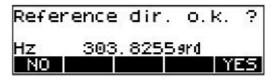

to confirm the station coordinates and to continue in the program

to reject, new start stationing

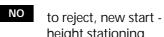
m to change the scale

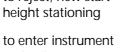

Scale:




to confirm

Reference direction:





NO to reject, new start stationing

Instrument and station heights:

ih/Zs to enter instrument and reflector heights

d Attention !

If neither a stationing in elevation has been realised beforehand nor Zs is entered now, all heights Z will be related to the station height Zs=0.

If ih is not entered either, all heights Z will be related to the trunnion axis height Zi=0.

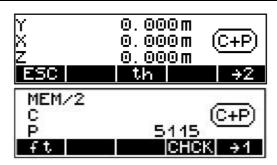
Measurement "Polar Points"

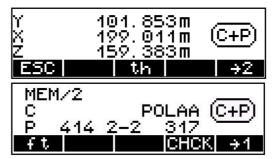
→1 **→**2

to change pages over

to enter the reflector height of the new point

ON + PNo


to enter point number and code of the new point


to change measuring unit

СНСК

Adjusting and checking

MEAS to start the measurement

Display of results and saving

Tip

The measurement can be triggered both on display pages 1 and 2.

After the measurement, the program returns to the page where the measurement has been triggered.

\sim				
Co	α r α	าก	аt	മ
\sim	\mathbf{O}		aι	てっ

5 Polar Points

Recording

Presettings
First steps

If recording is activated, the following lines are saved in dependence on the settings:

Designation of the mode

Point numbers and code

m Scale (only if changed)

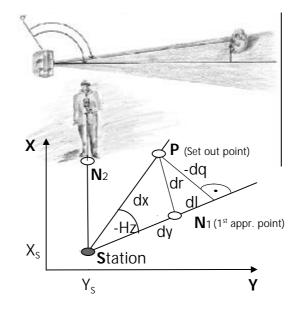
ih Instrument height (only if changed)

Zs Station height (only if changed)

th Reflector height at backsight point

(only if changed)

SD, Hz, V Polar coordinates


Y, X, Z Rectangular coordinates

3 Coordinates

5 Setting Out

Search for or setting out points in a given system of coordinates. A stationing is the prerequisite for setting out points on the basis of coordinates.

After having entered the coordinates of the point to be set out and measured the approximate point, the Elta® R displays the result in the form of the longitudinal deviation dl, the transverse deviation dq, the angle Hz between the approximate point and the nominal point, the radial deviation dr and the deviations of the coordinates dx, dy and dz.

given.: $(Y,X)_{S,P}$

comp.: :(HD,Hz)_{s--P}

meas.: : (HD,Hz,V)_{s-N}

comp.: : $(dl,dq,dr)_{P-N}$

Confirmation of Stationing

to confirm the station coordinates and continue in the program

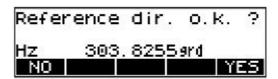
to reject, new start - stationing

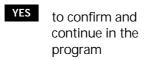
m to change scale



Scale:

to change scale


o.k. to confirm


Reference direction:

to confirm and continue in the program

to reject, new start - stationing

Instrument and station heights:

to reject, new start height stationing

to enter instrument and reflector heights

Measurement "Setting Out"

The following options for the setting-out method are available:

Stake out Z: off ESC YX HD CHCK Z-1

CHCK Adjusting and checking

Z-n Z-j

Change with / without height

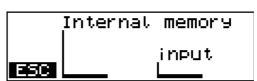
YXZ YX

see below

HDh HD

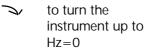
page 4-23

Setting out using given coordinates

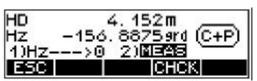

Setting out with or without height

or

using known setting out parameters


Setting Out using known nominal Coordinates

Principles First steps Editor Data management



6 Setting Out

After defining the coordinates:

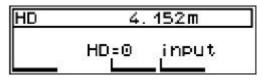
to enter the reflector height

ON₊ PNo

Point number and code to be corrected?

to continue see measurement results page 4-24

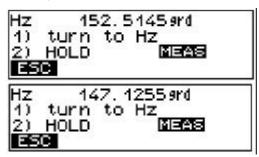
MEAS to measure the approximate point


Setting Out using known Setting Out Parameters

HD 4.152 m Confirmation of the old value

HD=0 Set to zero

Principles
First steps

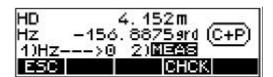

Entering HD:

to set the desired Hz value

MEAS 1st measurement to the approximate point

Defining the Hz value:

Coordinates


6 Setting Out

Point number and code to be corrected?

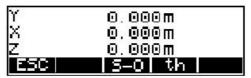
th to

to enter reflector height

Measurement results see below

Measurement Results

- to change over the different displays of results
- Test see below
- o.k. to confirm the setting out and to record; to set out other points


Display of results / recording

MEAS to repeat until the approximate point is close enough to the set out point!

Additional measurement of the set out point:

to enter the reflector height

MEAS to measure

Display of results / recording

S-O

Setting out, calling up next point

Display of results and recording

Recording

Presettings First steps

If recording is activated, the following lines are saved in dependence on the settings:

Designation of the mode

Point numbers and code

HD,Hz, Z or Nominal values

Y,X,Z

SD,Hz,V Readings for the point

dl, dq, dr Setting-out differences

dy, dx Setting-out differences (only if

nominal coordinates are used)

dz Setting-out differences (only if

the height is set out)

or

th Reflector height

(only if changed)

SD,Hz,V Readings and

Y,X,Z Actual coordinates of check

measurement

The chapter *Applications* describes typical configurations and computations for various measuring methods that are frequently used in practice.

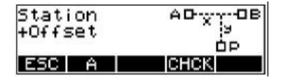
1 The Menu Guidance	5-2
2 Connecting Distance	5-4
3 Object Height	5-10
4 Point-to-Line Distance	5-14
TO OTHER COLUMN DISTANCE	0 11
5 Vertical Plane	5-19
6 Orthogonal Lines	5-25
7 Parallel Lines	5-29
	5.05
8 Alignment	5-35

The guidance through the menu is very easy to understand and based on a unique schema for all programs.

Principle

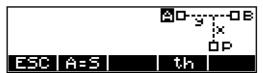
2 Applications

4 Point-to-Line Distance


After calling the respective program, a graphics appears with a detailed explanation of the program.

CHCK []

Adjusting and checking


Α

to start the program by calling point A

☞ Tip

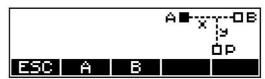
The function of adjusting and checking is required for measurements to be carried out without/with compensator or for checking the adjustment of the instrument.

The display of **A** in negative type indicates the possibility to measure to point **A**.

1 The Menu Guidance

ON + PNo

to enter the point number and code


MEAS to trigger measurement

☞ Tip

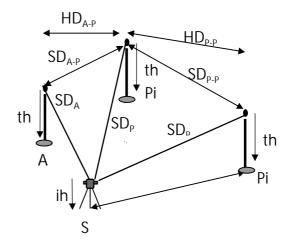
Prior to each measurement triggered with (MEAS) it is possible to enter a point number and a code for the point to be measured. The point number is incremented automatically by 1 without any need to lift a finger.

In the programs, the codes for defined points are invariably set (A, B, C, S) and cannot be changed.

- to continue in the program by calling point B
- ESC to return to the higher-order menu
- to repeat point A if required

If A has been calculated, measured or defined as station, the symbol for A (square) is filled. Now, the point B or P can be treated exactly the same way.

☞ Tip


If errors or confusions should occur whilst measuring to the points, the measurement to single points can be repeated immediately.

1 Connecting Distance

If it is not possible to measure a distance between two points directly, the measurement to these points has to be started at a station point S. Then, the program calculates the distances SD,HD and the height difference h between the points.

Examples for application:

Measurement of cross sections, checking the distances between points, boundaries and buildings

meas.: $(SD,Hz,V)_{A,Pi}$

requ.: $(SD,HD,h)_{A-P}, (SD,HD,h)_{P-P}$

Measurement "Connecting Distance"

CHCK

Adjusting and checking

Α

to start by calling point A


to enter the reflector height of A

ON + PNo

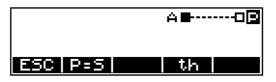
MEAS to measure to point A

A=S page 5-8

2 Connecting Distance

A Measurement to point A to be repeated?

P to call point P



th to enter the reflector height of P

ON + PNo

MEAS to measure to point P

P=S page 5-8

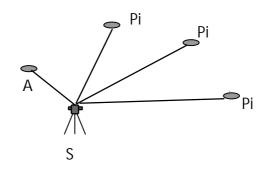
☞ Tip

After completing the determination of the first connecting distance, there are two different methods for continuing the measurement:

polygonal measurement P-P or radial measurement A-P.

The method can be changed at any time after returning to the higher-order menu and selecting again.

P-P page 5-6

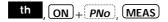

A-P page 5-7

to repeat measurement to point A

Display of results and saving

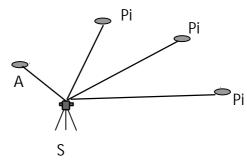
Polygonal Connecting Distance P - P

The results are always related to the last two points measured.


to enter the reflector height of the next point P

MEAS to measure to point P

Further points P:

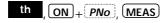


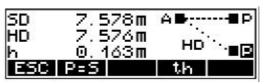
Display of results and saving

A - P

Radial Connecting Distance

The results are always related to point A.

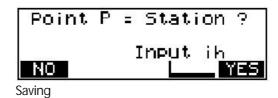

to enter the reflector height of the next point P



ON + PNo

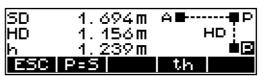
MEAS to measure to point P

Further points P:


Display of results and saving

The Station equals Point P = S

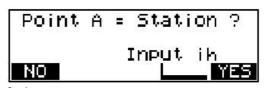
Principles
First steps


YES to confirm

NO to reject

ON + PNo

MEAS to measure to point P


Display of results and saving

The Station equals Point A A = S

Principles
First steps

YES to confirm

NO to reject

Saving

- A Measurement to point A to be repeated?
- to call point P and continue in the main program

Recording

Presettings First steps

If recording is activated, the following lines are saved in dependence on the settings:

Designation of the mode

Point numbers and code

SD, Hz, V Polar coordinates A,P

th, ih Reflector height, instrument height

(only if changed)

SD, HD, h Connecting distance A-P


SD, HD, h Connecting distance P-P

2 Object Height

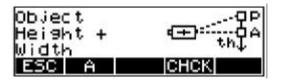
Heights of inaccessible points are determined by measuring SD,V to an accessible point in the plumb line. Only the angle V is measured to the inaccessible point.

Examples for application:

Determination of tree heights, widths of tree tops and trunk diameters, power lines, passageways and bridge profiles, setting out of heights on vertical

meas.: $(SD,V,th)_A, V_P$

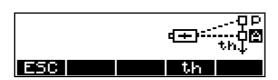
: Z, HD, (O) requ.:


Measurement "Object Height"

CHCK

Adjusting and checking

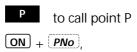
Α


to start by calling point A

th to enter the reflector height of A

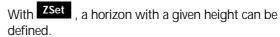
ON + PNo

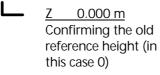
MEAS to measure to point A



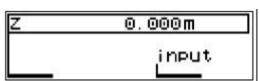
3 Object Height

Display of results and saving

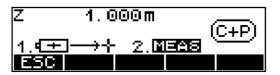


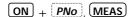

MEAS to measure to point P

to sight point P

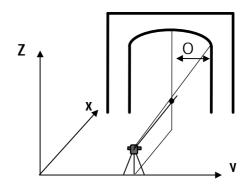

further points P

Definition of a Reference Height ZSet

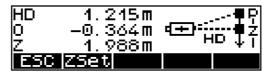




MEAS to measure to the reference height

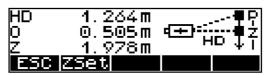

Further points:

Display of results and saving


Measurement beside the Plumb Line

Further points:

ON + PNO, MEAS


to the left of the plumb line

Further points:

ON + PNO, MEAS

to the right of the plumb line

Recording

Presettings First steps

If recording is activated, the following lines are saved in dependence on the settings:

Designation of the mode

Point numbers and code

SD, Hz, V Polar coordinates A

Hz, V Measuring point P

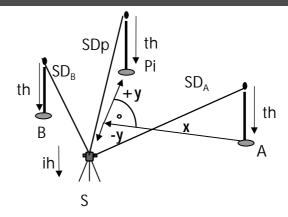
HD,O,Z Measuring point P

Z Set value Z

3 Point-to-Line Distance

Determination of the rectangular coordinates of any point in relation to a reference line defined by the points A and B.

Examples for application:


Checking of point distances from a reference line, checking of boundaries, intersection of sight rails, determination of the distances of

buildings from boundaries, footpaths or streets,

alignment of long straight lines in the event of visual obstacles on the

surveying of supply lines and channel routes referred to roads and buildings,

free stationing in a local system

meas.: : $(SD,Hz,V)_{A,B,P}$, th

requ.: $(x,y)_P$, referred to the line A-B

 $h_{\text{A-B}},\,h_{\text{A-P}}$

Measurement "Point-to-Line Distance"

CHCK

Adjusting and checking

to start by calling point A

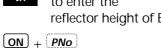
th to enter the reflector height of A

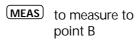
ON + PNo

MEAS to measure to point

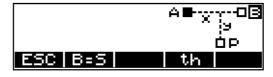
A=S page 5-16

4 Point-to-Line Distance



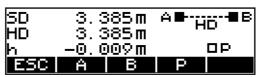


Measurement to point A to be repeated?



th to enter the reflector height of B

B=Spage 5-17

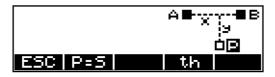


The results refer to points A and B

to call point P

B to be repeated?

A to be repeated?

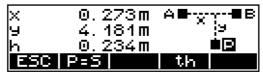

Display of results and saving

th to enter the reflector height of P

ON + PNo

MEAS to measure to point P

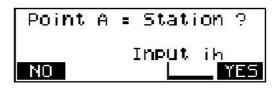
P=S page 5-17



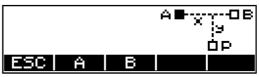
further points P

th to enter the reflector height of P

MEAS

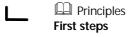

Display of results and saving

The Station equals Point A A = S

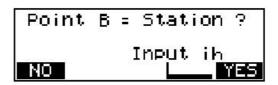


YES to confirm

NO to reject



to continue in the main program


Saving

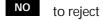
The Station equals Point B B = S

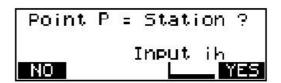
YES to confirm

NO to reject

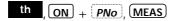
The results refer to points A and B(S)

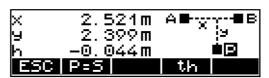
to continue in the main program




Display of results and saving

The Station equals Point P P = S (checking)




to confirm

To continue in the main program:

Display of results and saving

Recording

Presettings
First steps

If recording is activated, the following lines are saved in dependence on the settings:

Designation of the mode

Point numbers and code

SD, Hz, V Polar coordinates A,B

th,ih Reflector height, instrument height

(only if changed)

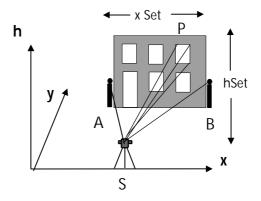
SD, HD, h Basis A-B

SD, Hz, V Polar coordinates P

y,x,h Coordinates P

A=S, B=S

and P=S Information lines


Y,X,h P=S

4 Vertical Plane

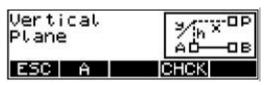
A vertical plane is defined by angle and distance measurements to two points. The coordinates of further points in this plane are determined only by an angle measurement.

Examples for application:

Surveying of building façades, heights of passageways, bridges or motorway signs, determination of coordinates in a vertical plane for the determination of heights and volume computations, setting out of sectional planes (planimetry and height) for façade construction

meas.: : (SD,Hz,V)_{A,B} , th,

 $(Hz,V)_P$

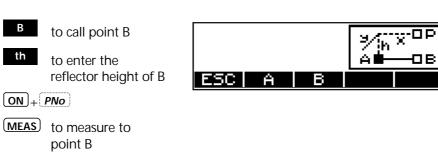

requ.: $(y,x,h)_P$

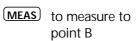
Measurement "Vertical Plane"

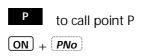
CHCK

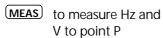
Adjusting and checking

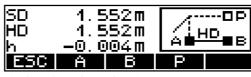
to start by calling point A

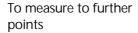

th to enter the reflector height of A

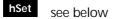

ON + (*PN*o)

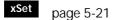

MEAS to measure to point A

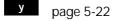


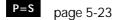

5 Vertical Plane

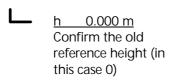


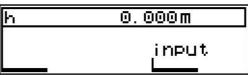







Display of results and saving




Display of results and saving

hSet - Determination of the Height Coordinate

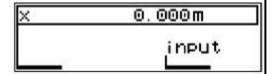
Definition of the horizon:

5 Vertical Plane

ON + PNo

MEAS to measure Hz and V to point P

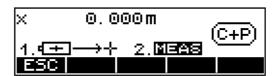
The results refer to the new height


To measure further points

Display of results and saving

xSet - Definition of the x - Axis

x 0.000 m
Confirm the old
reference height (in
this case 0)



Principles
First steps

Input (1,00)

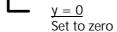
ON + (PNo)

MEAS to measure Hz and V to the desired point P

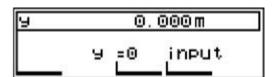
The results refer to the new height (in this case, the desired and set zero point of coordinates has been measured)

To measure further points

Display of results and saving


ySet - Points before or behind the Plane

Definition of preceding sign

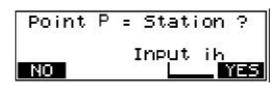

o.k. to confirm

y 0.000 m Confirm the old value (in this case 0)

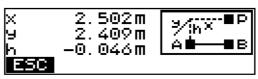
After entering y=0,350m:

MEAS to measure Hz and V to point P

Display of results and recording


5 Vertical Plane

The Station equals Point P P=S


YES to confirm

NO to reject

Coordinates of S with reference to plane A-B

further points

Display of results and recording

Recording

Presettings First steps

If recording is activated, the following lines are saved in dependence on the settings:

Designation of the mode

Point numbers and code

SD, Hz, V Polar coordinates A,B

th,ih Reflector height, instrument height

(only if changed)

SD, HD, h Basis

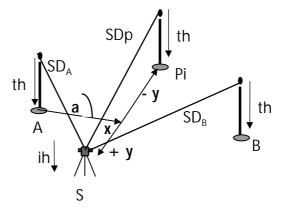
Hz,V P

y, x, h

P=S Information lines

Y,X,h P=S

6 Orthogonal Lines


2 Applications

5 Orthogonal Lines

Determination of the angle a and the distances x,y for points, referred to a reference line A-B.

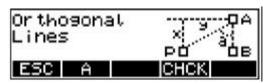
Examples for application:

Checking of lines for orthogonality, setting out of right angles, measurements in the case of visual obstacles

meas.: $(SD,Hz,V)_{A,B,P}$, th,

requ.: $: a_P, (y,x)_P$, with ref. to line A-B

 $h_{\text{A-P}}$

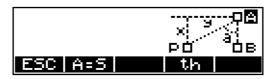

Measurement "Orthogonal Lines"

CHCK

Adjusting and checking

Α

to start by calling point A


to enter the reflector height of A

ON + PNo

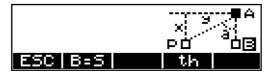
MEAS to measure to

point A

A=S page 5-26

6 Orthogonal Lines

to call point B


Α

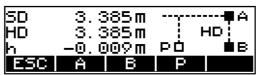
Measurement to point A to be repeated?

to enter the

reflector height of B

ON + PNo

MEAS to measure to point B


B=Spage 5-27

The results refer to points A and B

to call point P

B to be repeated?

A to be repeated?


Display of results and saving

th to enter the reflector height of P

ON + PNo

MEAS to measure to point P

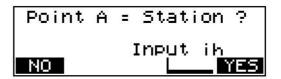
P=S page 5-27

Further points P

to enter the reflector height

ON + PNo

MEAS

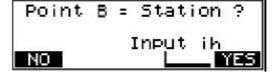

Display of results and saving

The Station equals Point A A = S

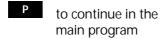
Principles
First steps

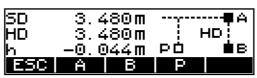
YES to confirm

NO to reject


to continue in the main program

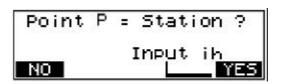
Saving


The Station equals Point B B = S

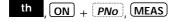


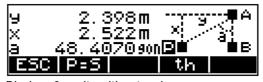
NO to reject

The results refer to points A and B(S)



Display of results and saving


The Station equals Point P P = S (checking)



To continue in the main program:

to reject

Display of results without saving

6 Orthogonal Lines

Recording

Presettings First steps

If recording is activated, the following lines are saved in dependence on the settings:

Designation of the mode

Point numbers and code

SD, Hz, V Polar coordinates A,B

th,ih Reflector height, instrument height

(only if changed)

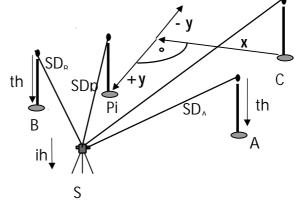
SD, HD, h Basis A-B

SD, Hz, V Polar coordinates P

y,x,a Coordinates, angle P

A=S, B=S

P=S Information lines


Y,X,a P=S

6 Parallel Lines

Creation of a parallel line through C to a reference line A-B. The point distances x,y are determined with reference to this parallel through C.

Examples for application:

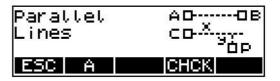
Checking of lines for parallelism, setting out of parallel lines if only one point is given

meas.: $(SD,Hz,V)_{A,B,C,P}$, th,

requ.: $(y,x)_P$, with reference to line

through C (parallel to A-B),

 h_{A-P}

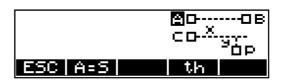

Measurement "Parallel Lines"

CHCK

Adjusting and checking

Α

to start by calling point A



to enter the reflector height of A

ON + PNo

MEAS to measure to point A

A=S page 5-32

7 Parallel Lines

b to call point B

Α

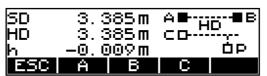
Measurement to point A to be repeated?

to enter the reflector height of B

ON + PNo

MEAS to measure to point B

B=S page 5-32



The results refer to points A and B

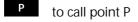
to call point C

B to be repeated?

A to be repeated?

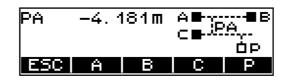
Display of results and saving

to enter the reflector height of C


ON + PNo

MEAS to measure to point C

c=s page 5-33


7 Parallel Lines

A to be repeated?

B to be repeated?

c C to be repeated?

to enter the reflector height of P

ON + PNo

MEAS to measure to point P

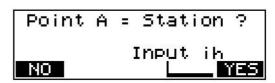
P=S page 5-33

Further points P

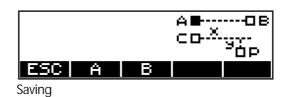
to enter the reflector height

ON + PNo

MEAS


Display of results and saving

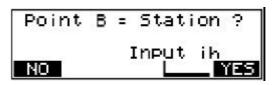
The station point is point A = S


Principles
First steps

YES to confirm

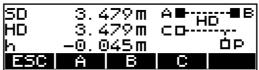
NO to reject

further in the main program



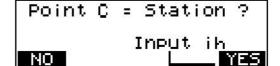
The station point is point B B = S

Principles
First steps

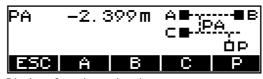

YES to confirm

NO to reject

The results refer to points A and B(S)

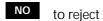

further in the main program

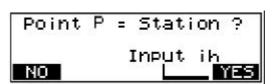
Display of results and saving


The Station equals Point C C = S

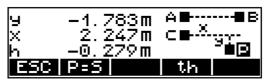
NO to reject

to continue in the main program




Display of results and saving

The Station equals Point P P = S (checking)



To continue in the main program:

Display of results and saving

Recording

Presettings
First steps

If recording is activated, the following lines are saved in dependence on the settings:

Designation of the mode

Point numbers and code

SD, Hz, V Polar coordinates A,B,C

th,ih Reflector height, instrument height

(only if changed)

SD, HD, h Basis A-B

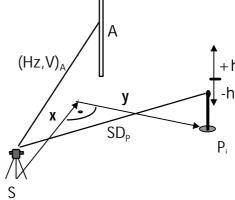
SD, Hz, V Polar coordinates P

y,x,h Coordinates P

A=S, B=S

C=S, P=S Information lines

Y,X,h P=S


2 Applications

7 Alignment

Determination of point distances x,y on the straight line from S to A.

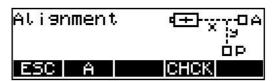
Examples for application:

Checking of point deviations from a given straight line Setting out of straight lines in the case of direct visual contact

meas.: : (Hz,V)_A

: $(y,x)_P$, in relation to S-A,

h in relation to the alignment


height in point Pi

Measurement "Alignment"

CHCK


Adjusting and checking

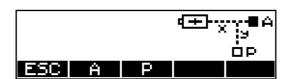
to start by calling point A

ON + PNo

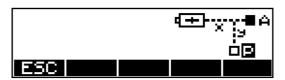
MEAS to measure to point A

There is only an angle measurement carried out to point A!

Applications

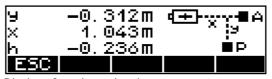

8 Alignment

to call P



Measurement to point A to be repeated?

ON + PNo


MEAS to measure to point P

Further points P

MEAS

Display of results and saving

Recording

Presettings First steps

If recording is activated, the following lines are saved in dependence on the settings:

Designation of the mode

Point numbers and code

Hz, V Point A

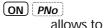
Polar coordinates P SD, Hz, V

Coordinates P y,x,h

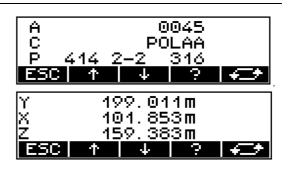
Decisive features of an efficient work routine are the saving of the measured and computed values as well as the transfer of measured data to a PC and the transfer of coordinates from the PC to the surveying instrument. This chapter describes all processes necessary to meet these requirements. The section *Editor* only applies to Elta[®] R 45 and Elta[®] R 55.

1 Editor	6-2
2 Data Transfer	6-8
3 Data Formats	6-13
4 Interface	6-31
5 Remote Control	6-33
5 Data Record Lines	6-41

Calling the EDIT Menu



Display of the free data lines and address of the last data line written

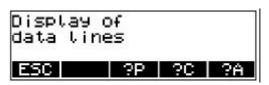

Display of Data Lines

- to call search function
- to change page
- to display preceding data line
- to display following data line

allows to change point number and code

d Attention !

In the coordinate and application programs, fixed codes are assigned to certain data lines. Such codes cannot be modified by the operator.


Searching for Data Lines

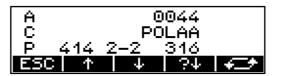
to call search function

to search for point number

c to search for code

to search for address

Input of the point number, code or address to be searched for


to continue search using the same criterion

to change page

to display preceding data line

to display following data line

to quit search routine

☞ Tip

If no data line is found to which the search criterion applies, search is followed by an error message.

Deleting Data Lines

to call the function "Delete"

This function deletes all data lines or the data lines <u>from</u> a selected line number (address) to the last data line saved.

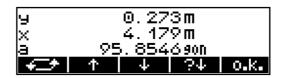
Attention!

The deletion is definite and irrevocable. To avoid any unintentional loss of data, utmost care has to be taken over this action!

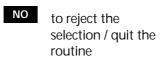
- all to select all lines
- or from the line with point number xx
- or from the line with code xx
- or from the line with address xx

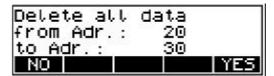
Example: search for point number 2

?


 to continue search
 using the same
 criterion

to switch over to the page of readings




o.k. to confirm the line

For another check, the selected data lines are displayed again and have to be confirmed.

to confirm the selection

Entering Data Lines

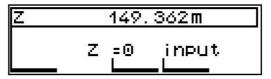
Inpt

to call the function "Input"

to enter the planimetric coordinates

Input of data lines ESC YX YXZ Z

to enter planimetric coordinates and heights


to enter heights

Example of a height input:

Z 149,362 m Confirmation of the old value (in this case 149,362 m)

 $\frac{Z = 0}{\text{Set the height to}}$

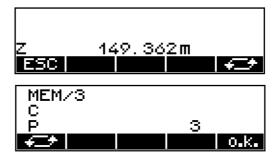
Principles
First steps

to go to the desired position

+ and -

to browse through digits

o.k. to confirm

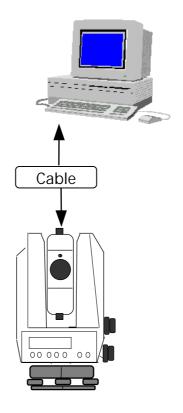


to switch over to the page for readings

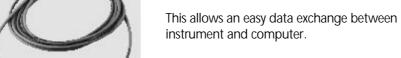
ON PNo

to enter point number and code

o.k. to confirm and save


Input of further coordinates and heights with point number and code

Presettings First steps


d Attention !

The sequence and designation of the coordinate axes depend on the selected system of coordinates and the setting of the display of coordinates. The softkey YX and YXZ, respectively, is labelled according to this selection.

Data transfer can be performed between and by

Elta^â R PC Cable

Preparing the Instrument for Data Transfer

5 Interface

to go to the menu

MOD to change settings

Menu Interface Elta® R

Elta^a S • PC

Connect both devices by the serial interface cable and start the necessary programs for data transfer.

Cable for data transfer

Elta® R PC cable with protocol Xon/Xoff:

Order number 708177-9470.000

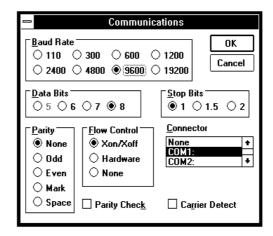
Interface parameters for transmitting and receiving project files:

Baud rate: 9600

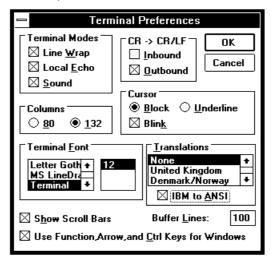
Protocol: Xon/Xoff

Parity: even

Stop bits: 1 (not variable)

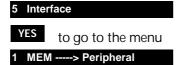

Data bits: 8

[™] Tip

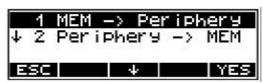

For data transfer to and from the PC, you can use for example the MS-Windows $^{\text{TM}}$ Terminal program.

PC Terminal Settings

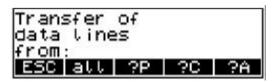
Example for WindowsTM 3.xx Terminal program: Set the PC for data transfer as follows:


For sending or receiving a project file, set the terminal preferences as shown in the follows:

To transmit a project file, select "Send text file" or "Receive text file".


Data Transmission

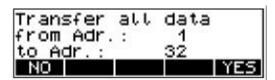
Instrument Settings:



to confirm

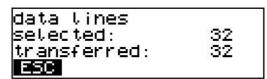
Data transfer menu between Elta® R and PC

Selection of the required data lines



Editor Data Management



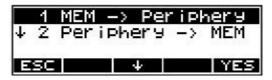

Now, set the PC to "Receive text file". The instrument or program at the receiving end must be set to the receive mode before you can transmit the project file.

The data lines are transferred to the PC.

Data Reception

5 Interface

to go to the menu


2 Peripheral ----> MEM

YES to confirm

The data lines are transferred to the Elta® R.

On the instrument:

Data transfer menu between PC and Elta® R

Enter the name of the source file into the PC Start the transfer from the PC

Transferring

ESC

d Attention !

The instrument only accepts coordinates.

to end data reception

data lines received: 207 accepted: 207

Tip

Time Out occurs after 30 seconds without data communication.

The message "Time Out" indicates a data error. After that, the program returns to the data transfer menu.

Introduction

Zeiss Geodetic Systems are used for measurement functions with different data processing requirements.

Elta ® instruments allow densely packed internal measurement and result data lines to be output in various formats.

M5, R4, R5, Rec500 record format

Four data formats which have grown historically are subject to on-site revision service for compatibility with customer instruments. Currently, M5 is the format

to provide most comprehensiveness in definitions. It should be used preferentially for any other tasks.

This chapter describes the structure of data format and the type identifier of measured and calculated values.

Data transfer

Data management

User interface

Data management

Technical

All instruments have a serial interface which ensures the data exchange.

d Attention!

Instead of the usual marks within the 27 digit point identification, the M5 data format of Elta * R is limited to a 12 digit point number and a 5 digit code.

Description of M5 data format

"M5" -> 5 Measuring data blocks per data line:

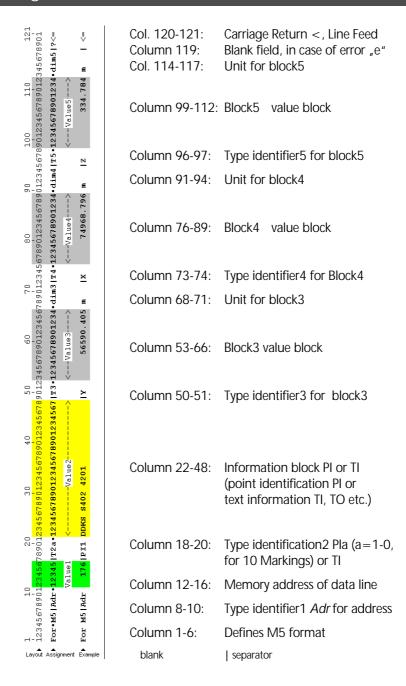
- 1 Address block
- 1 Information block
- 3 numerical data blocks

The Zeiss M5 data format is the common standard for all current Carl Zeiss surveying systems.

All 5 data blocks are preceded by a type identifier. The 3 numerical data blocks have a standard layout comprising 14 digits. In addition to the decimal point and sign, they accept numeric values with the specified number of decimal places. The information block is defined by 27 characters.

The information block is defined by 27 characters. It is used for point identification (PI) and text information (TI e.g.).

The address block is comprised of 5 digits (from address 1 to 99999).


The M5 data line

The data line of the M5 format consists of 121 characters (bytes). The multiplication of this figure by the number of addresses (lines) stored shows the size of the project file in bytes.

Blanks are significant characters in the M5 file and must not be deleted.

The example describes an M5 data line at address 176 with coordinates (YXZ) recorded in unit **m**. The point identification of marking 1 is **DDKS S402 4201**. Column 119 includes a blank (no error code).

The end of the line has CR, LF (columns 120 and 121, shown here as <=).

Explanations to the data line

Abbr.	Description	Digits	Characters	Meaning
For	Format identifier M5 Format type	3 2	alpha alpha	Elta® Format 5 meas. data blocks
Adr	Address identifier	3 5	alpha numeric	Value1
	Value1	5	numenc	Memory address
T2 a	Type identifier Marking Value2	2 1 27	alpha numeric alpha	Value2 (Pla ,TI, TO) a=1, 2, 3 ,, 9, 0 Pl or Tl
Т3	Type identifier Value3	2 14	alpha numeric	Value3 14-digit value
dim3	Unit	4	alpha	4-digit unit
Т4	Type identifier Value4	2 14	alpha numeric	Value4 14-digit value
dim4	Unit	4	alpha	4-digit unit
Т5	Type identifier Value5	2 14	alpha numeric	Value5 14-digit value
dim5	Unit	4	alpha	4-digit unit
?	Identifier	1	alpha	Error message, or
Special	characters		ASCII code	Hex code
	Separator	1	ASCII 124	Hex 7C
	Blank	1	ASCII 32	Hex 20
<	CR (Carriage Return)	1	ASCII 13	Hex OD
=	LF (Line Feed)	1	ASCII 10	Hex 0A

For your information only! Elta® R - Page 6-23

The point identification PI in M5 Format

The PI is comprised of 27 characters. It starts in column 22 and terminates in column 48 in the M5 data line. The data structure within the PI is defined by markings. A maximum of 10 markings, marked in the preceding type identifier with PI1 to PI0 (columns 18, 19, 20), can be designated to the PI (depending on the instrument).

For your information only! Elta[®] R - page 6-26

The type identifier in the M5 Format

In the course of the time, requirements on the data format have increased. Therefore, the M5 Format carries most of the type identifiers of all available formats, always based on the preceding format (Rec500).

Type identifiers are defined by two characters (except for Adr). If only one character is necessary, the second character is a blank.

In the M5 Format there are 5 Type identifiers (TK) defined:

Adr	Identifier address (Value1)
T2	Identifier information (Value2)
Т3	Identifier 3. Value field (Value3)
T4	Identifier 4. Value field (Value4)
T5	Identifier 5. Value field (Value5)
	T2 T3 T4

Example:

"PI" for point identification or "TI" for text information can be used for T2. For T3, T4, T5, "D", "Hz", "V" or "Y", "X", "Z" can be used.

Description of Rec 500 data format

"Rec500" stands for the description of the electronic field book Rec500.

With the electronic field book Rec500 a data format was developed which was created for CZ instruments years ago and is today the base for the M5 format..

- 1 Address block
- 1 Block Information
- 3 Numeric data blocks

The Rec500 format is divided in 5 marking blocks (analogous the M5 format). These blocks differ in their block length from the M5 format, 80 characters (Bytes) are available on a data line.

The Rec500 Data line

The data line in the Rec500 format is comprised of 80 characters (Bytes).

		oo criai	acters (bytes).	
Abbr.	Description	Digits	Characters	Meaning (w. example)
W1	Address	4	numeric	Memory address
PI	Point identification	27	num / alpha	Point identification (14-digits) and additional information (13 digits)
T1	Type identifier 1. Value	2 12	num / alpha numeric	D = slope distance E = horizontal distance Y = coordinate, etc.
Т2	Type identifier 2. Value	2 13	num / alpha numeric	Hz=horizontal direction X = coordinate, etc.
Т3	Type identifier 3. Value	2 9	num / alpha numeric	V1=zenith angle Z = coordinate, etc.
Special	characters		ASCII code	Hex code
	Blank	1	ASCII 32	Hex 20
<	CR (Carriage Return)	1	ASCII 13	Hex OD
=	LF (Line Feed)	1	ASCII 10	Hex OA

For information only!

Elta® R - page 6-24

Column 79-80: Carriage Return <, Line Feed =

Column 70-78: 3. Value block

Column 68-69: Type identifier for 3. Value

Column 54-66: 2. Value block

Column 52-53: Type identifier for 2. Value

Column 39-50: 1. Value block

Column 37-38: Type identifier for 1. Value

Column 23-35: additional information of PI

(alpha numeric)

Column 9-35: Point identification PI

Column 9-22: Point Number of PI

(numeric)

Column 4-7: memory address of data line

Column 1-3: 3 Blanks

Blank

The point identification in Rec500 Format

The PI is divided into two areas:

Area 1: numeric area for point marking (point number)

Area 2: alpha numeric area for additional point information

6-19

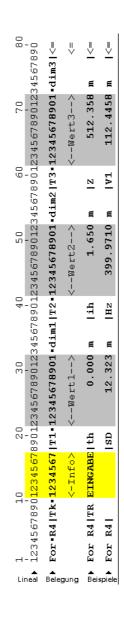
Description of R4 and R5 (M5, Rec 500) format of Elta® R

"R4" stands for the data recording format of the Elta® R instruments containing 4 measuring data blocks:

1 Information block3 numeric Data blocks

"R5" stands for the data recording format of the Elta® R instruments containing 5 measuring data blocks:

1 Address block1 Information block3 numeric Data blocks


Two data recording formats - R4 and R5 - are available in the Elta® R total station (tachymeter). Both formats can be chosen in the instruments. Depending on the setting with or without address, either data record format R5 (with address) or R4 (without address) can be used.

R4 and R5 format data lines

The data line in the R4 format contains 80 characters (Bytes). It is comprised of an information block and 3 numeric value blocks.

The data line in the R5 format contains 89 characters (Bytes). It is comprised of one address block, one information block, 3 numeric value blocks. Both formats contain the same type identifiers for each block.

Abbr.	Description	Digits	Characters	Meaning
For	Marking format	3 2	alpha	Elta® R Format
R4,R5	format type R4, R5		alpha	4 or. 5 Data blocks
Adr	Address marking	3 4	alpha	3 digits for marking
<aa></aa>	Value1		numeric	Address in R5 Format
Tk	Type identifier Info	2	alpha	Type identifier TR or KR Info for data line
<info></info>	Info	7	num / alpha	
	Type identifier Value i	2	num / alpha	Type ID Value block
	Value i (i = 1,2,3)	11	numeric	Value block Value i
	dim i (i = 1,2,3)	4	alpha	Unit block Value i
•	cial characters a format		cial characters , e M5 format.	, < and = are analo-

The R4 Data line

Column 79-80: Carriage Return < , Line Feed =

Column 74-77: Unit for 3. Value block

Column 62-72: 3. Value block

Column 59-60: Type identifier for 3. Value block

Column 54-57: Unit for 2. Value block

Column 42-52: 2. Value block

Column 39-40: Type identifier for 2. Value block

Column 34-37: Unit for 1. Value block

Column 22-32: 1. Value block

Column 19-20: Type identifier for 1. Value block

Column 11-17: Data line information

(alpha numeric)

Column 8-9: Type identifier information

Column 1-6: Defines R4 format

Blank | Separator

The R5 Data line

Column 88-89: Carriage Return < , Line Feed =

Column 83-86: Unit for 3. Value block

Column 71-81: 3. Value block

Column 68-69: Type identifier for 3. Value block

Column 63-66: Unit for 2. Value block

Column 51-61: 2. Value block

Column 48-49: Type identifier for 2. Value block

Column 42-46: Unit for 1. Value block

Column 31-41: 1. Value block

Column 28-29: Type identifier for 1. Value block

Column 20-26: Data line information

(alpha numeric)

Column 17-18: Type identifier information

Column 12-15: Memory address of Data line

Column 8-10: Type identifier *Adr* for address

Column 1-6: Defines R5 Format

Blank | Separator

The point identification in the R4/R5 Format

For a point identification in the R4 and R5 format are max. 7 digits available.

The PI is controlled by two Type identifiers, TR and KR, which describe the kind of PI.

TR Type identifier for a text information

block

KR Type identifier for a PI with code and

point number.

Point number: 0...9, right-aligned,

4-digit

Point code: 0...9, Blank, #

3-digit

The 3 digit code can be combined with additional characters. It is suggested to use the character # for marking incorrect measurements.

Eltaâ R - Marking in the M5/Rec 500 Format

The Elta® R uses a mark which is saved internal in the instrument. This mark consists of 3 blocks with clearly defined block lengths. The user is able to manipulate the order of the 3 blocks.

Examples:

Layout gage: 1 10 20 27

123456789012345678901234567

Sample Marking: PPPPPPPPPP CCCCC IIIIIII

Meaning:

PPPPPPPPPP 12-digit point number

CCCCC 5-digit point code

IIIIII 7-digit information block

☞ Tip

The information block (\mathbf{I}) is left-aligned, the code (\mathbf{C}) and point number (\mathbf{P}) are right-aligned.

Upon data conversion to the R4 / R5 format, the point number and point code will be shortened to 5 and 3 digits, respectively. The right-aligned digits remain.

Change settings of Elta^a R —Markings in the M5 / Rec 500 format

5 User interface

yes go to the menu

MOD to change setting

Tip

In case of overlapping information in the blocs, the instrument returns into its initial state (Default).

Elta^a R -- Markings in R4/R5 format

In instruments of the Elta® R Serie one marking can be used.

In both the R4 and R5 format 7 characters are available for point identification and marking.

The PI is controlled by two type identifiers TR and KR, which mark the kind of the PI.

TR Type identifier for one text information block

KR Type identifier for a PI with code and point number.

Point number: 0...9, right-aligned,

4-digit

Point code: 0...9, Blank, #

3-digit

The 3 digits in the code can be combined with any applicable character. It is sug gested, to use the character # to mark incorrect measurements.

Examples:

Layout gage: TI 1234567

Text information: TR IIIIII

Point number and code: KR CCCPPPP

Meaning:

7-digit Text information block

CCC 3-digit Code block

PPPP 4-digit Point number block

In the M5 / Rec500 Format a 5-digit code and a 12-digit point number are used. In the R4 / R5 Format the established digits (3 and 4, respectively)

remain right-aligned.

Definition of type identification

Definition	Type identifiers are assigned to the 5 measuring data blocks of pre-set codes, which show the number or character value of the block.
Type ID´s are defined with two characters.	Type identifiers are (except for Adr) defined with two characters. If only one character is necessary, the second character is blank. The code is case sensitive.
	The following table lists all Type identifiers in alphabetical order according to the CZ Data Formats and the possible position of characters after the comma (,?????) as well as signs (\pm) :

Type identifiers - CZ Formats M5, R4, R5 and Rec500 (Elta R)

Type identifie	r ,???? ±	Meaning
Α	2,3,4	Distance addition constant
а	6	Horizontal angle of orthogonal line
Adr	-	Address (the only TK with 3 characters)
В		V-angle of control point
С	3,4,5	Collimation correction
c_		Sighting axis error
dl	2,3,4	Longitudinal deviation
dq	2,3,4,5	Transverse deviation
dr	2,3,4	Radial deviation in setting out
dx	2,3,4	Coordinate Difference / Deviation in X direction
dy	2,3,4	Coordinate Difference /Deviation in Y direction
dz	2,3,4	Coordinate Difference / Deviation in Z direction
HD	2,3	Horizontal distance
HV	3,4,5	Hz rotation
Hz	3,4,5 ±	Horizontal direction

Data Management 3 Data Formats

Type identifier	.????	±	Meaning		
h	2,3,4	±	Height difference	of a station	
i	3,4,5		Index correction		
ih	2,3,4		Instrument height	t	
KR			Information Elta®	R with code and point number	
m	6		Scale		
NZ	3,4,5		Compensator read	ding, sighting direction	
0	2,3,4		Transverse distance	ce (indirect height determination)	
Om	3,4,5		Orientation (station	oning) Omega	
Р	0,0,1		Air pressure (in hF	Pa, Torr or InMerc)	
PI			Point Identification	n (general)	
ра	2,3,4		Parallel distance in	n 3-D plane	
SD	2,3		Slope distance		
SZ	3,4,5		Compensator run center: component in line of sigh direction		
T			Text ID in Rec500	Format	
TI	-		Text information line		
TR			Information Elta® R as text information		
T_	-		Temperature (in °	C or °F)	
th	2,3,4		Reflector height		
V1	3,4,5		Vertical angle:	zenith angle	
V2	3,4,5		Vertical angle:	vertical angle	
V3	3,4,5		Vertical angle:	height angle	
V4	3,4,5		Vertical angle:	slope in [%]	
Χ	2,3,4		X - Coordinate		
Х	2,3,4		x - Coordinate (lol	kal)	
Υ	2,3,4		Y - Coordinate		
У	2,3,4		y - Koordinate (lokal)		
Z	2,3,4		Z - Koordinate (Height above N.N.)		

Description Value blocks

3 Value blocks

In each of the Carl Zeiss Formats three value blocks are available whose number of digits depends on the format:

Format	Value1	Value2	Value3	dim
M5	14	14	14	4
R4/R5	11	11	11	4
Rec500	12	13	9	-

Type identifiers

All value blocks are preceded by a type identifier which specifies the function of the succeeding value.

In the M5 and R4 / R5 Format for the value block exists a unit (dim), which follows, 4-digit (divided by a Blank), the value block.

The values are typed right-aligned in the blocks. Decimal point, digits after the comma and definitions of preceding characters correspond to the internal instrument specifications.

d Caution!

If the files of the CZ Formats are entered manually, it is important to remember that upon using the data in the instrument the digits after the comma and the units need to be adjusted correspondingly.

The following units are defined:

Angle measurement

gon, DEG, DMS, mil, grad, %

Distances, Coordinates

m, ft

Pressure

TORR, hPa, inHg

Temperature

C, F

Standard, PR etc.

no unit

CZ Format ID and address block

CZ Format ID in Columns 1-6

In the formats M5, R4 and R5 a marking which corresponds to the format precedes the data line.

For M5 Format marking for M5 Format

For R4 Format marking for R4 Format

For R5 Format marking for R5 Format

"For" and the marking M5, R4 or R5 are divided by

a Blank (ASCII 32).

An exception is the M5 Format for the GePoS $\! ^{ \text{\tiny B} }$

receiver:

For_M5 Format marking M5 Format GePoS® receiver of

software versions less than V3.7:

In this case, "For" and the marking M5 is divided

by a "_" (ASCII 95).

From V3.7 on, the Format marking is **For M5**.

Address blocks

The Formats M5, Rec500 and R5 have an address block which marks the data line with the current memory address. In the M5 and R5 format, a type identifier Adr is activated:

Format	TK	Column	Digit
M5	Adr	12 - 16	5
R5	Adr	12 - 15	4
Rec500	none	4 - 7	4

Adr 00001 or

Adr 1 is allowed.

The address entry is right-aligned. Zeros can be used but are usually omitted. The first data line

starts with the memory address 1.

Data output on a printer

Direct data output from the instrument to the printer or form the PC:

The R4 data recording format ensures problemfree printout on A4 printers, with each print line comprising one data line. To achieve the same with the R5 data recording format, the following should be noted:

- Direct data transmission to a printer Select condensed font in the printer or use A 3 printer
- Printing data from a DOS editor Select condensed font in the printer or use A 3 printer
- Printing from a WINDOWS task
 Do not use true type font or proportionally spaced font, but e.g. Courier

 Select a small type size
 Use landscape print format

Attention!

For printing of data lines from the instrument at a printer is a serial type of printer interface necessary.

Introduction

This charpter decribes the conditions of data transfer, the pin assignment of the interface and key codes and function requests for controlling the instrument by a computer.

What is an Interface?

An interface is the point of contact between two systems or system areas, i.e. the point where information is interchanged. To ensure that it is understood by both the transmitting and receiving unit, specific rules must be defined for the transmission of signals and data.

Hardware interface

a physical connection between functional units such as measuring instruments, computers or printers.

Of significance for the user are:

- shape and pin assignment of the connectors on the functional units and connecting cables
- The data transmission method. The parameters and protocols for transmission control

Software interface

Software interfaces establish the link between programs or program modules. The data to be transmitted must conform to a defined structure: the record format..

User interface

also called user guidance, important for handling of a system.

Interfaces between the user and the system are the monitor, the keyboard and the options for user guidance provided by the software. In the Elta® R concept, special emphasis has been placed on the design of the user interface.

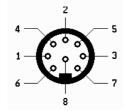
Hardware interface

The interface for the peripheral equipment is of the asynchronous, serial type and conforms to DIN 66020 standard (V 24 / RS 232 C).

The interface is provided on the slip ring connection.

Interface functions:

(1) Data transfer:


Direct transmission of measured data between Elta® R and the connected peripheral instrument (computer, printer,...).

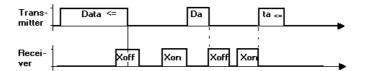
A series of transmission parameters are available for the control of this process.

(2) Software updates for the Elta@R can be loaded via this interface .

Pin assignment of the interface /connecting cable

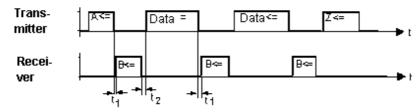
Pin	Signal	Direction	Designation
1	-	-	
2	Ground	-	Ground (-U _{batt})
3	-	-	
4	SD	Output	Transmitted data
5	ED	Input	Received data
6	Vcc	In	External power
			supply (+ U _{batt})
7	Vcc	In	External power
			supply (+ U _{batt})
8	Ground	-	Ground (-U _{batt})

Pin assignment (exterior view of connector), 8-pin female stereo connector


Connecting cable:

Cable 708177 - 9460 is used for external data recording and for data transfer to a PC. You can also use cable 708177 - 9470 (with angled plug) if the Elta® R is installed on a tripod during data transfer.

Introduction


This charpter decribes the conditions of data transfer, data transmission protocols, overviewe about key codes and answers of the PC for the instrument control.

XON/XOFF Control

The XON/XOFF protocol is a very simple, but efficient data transmission protocol. It is preferably employed for so-called terminal programs (e.g. terminal under Windows or Xtalk) and can be used in data recording from the Elta® R to a computer.

Rec 500 Software Dialog (Rec 500 Protocol)

Control diagram of the `Rec 500 software dialog´

The following definitions apply to the time values entered in the control diagram:

 t_1 : Interval between signal A from Elta® R and the response from the recording unit with signal B, and interval between the end of data transfer and the acknowledgement with signal B.

$$0 > t_1 < t_{\text{(Time-Out)}}$$
 $t_1 = 20 \text{ s}$

The recording unit may respond without delay to the recording request from the Elta® R. However, the selected time-out $t_{(\text{Time-out})}$ must not be exceeded; otherwise an error message is displayed and external recording is deactivated. The Elta® R assumes that no external recording unit has been connected.

 t_2 : Interval between the acknowledgement of the reception of a data line by the connected recording unit with signal B and the transmission of a further data line. Depending on the type of recording line involved, this amounts to

$$10 \text{ ms} > t_2 < 100 \text{ ms}$$

Rec 500 software dialog is also suited for data transmission to the Elta® R The control diagram is identical to the one shown above, with the designations of the transmitted data line and received data line being interchanged, as data is now transmitted by the peripheral unit.

Key Codes and Function Requests

If the Elta® R is controlled by a computer, the keys can be emulated with the following codes:

Key	Code	Key	Code
F1	T31₊	ON+F1	TB1₊
F2	T32₊	ON+F2	TB2₊
F3	T33₊	ON+F3	TB3₊
F4	T34₊	ON+F4	TB4₊
F5	T35₊	ON+F5	TB5₊
MEAS	T4D↓	ON+MEAS	TCD↓

[→] symbol for CR/LF

The Elta® R can be controlled either by key pressure or, equally, from a connected computer. Each recognized key code is acknowledged by the Elta® R with 'Q,J'; in the event of errors such as incorrect syntax of the call or data transmission errors, the response is 'E,J'.

Function requests:

Code	Meaning
FKO↓	Compensator reading in sighting direction
FMD↓	Slope distance SD
FMW↓	Angle readings Hz, V
FMS↓	SD, Hz, V
FMR↓	HD, Hz, h reduction
FMK↓	y, x, h local coordinates

Each function request is answered with a data line in the selected format. The with/without address setting is effective. Only the XON/XOFF protocol is used

d Attention!

The values entered for scale, addition constant, index and collimation correction are taken into account in all function requests.

Parameters:

Reading: ?KTTT↓

Response: !KTTT |1234567890123456 unit→ Setting: !KTTT |12345678901234 unit→

Response: Q↓

The response to a reading command is identical with the setting command.

In the event of errors such as incorrect syntax of the call or data transmission errors, the response is $^{\text{L}}$.

Designations:

?K !K	fixed character string for reading
; K	fixed character string for setting
TTT	type identifier (see examples)
┙	carriage return/line feed
	separator, ASCII dec. 124
1-6	numerical value, 16 characters
	blank, ASCII dec. 32
unit	unit of the associated numerical value,
	4 characters or blanks
Q	acknowledgement

Examples for the parameter calls:

?K00AJ Instrument Identification !K00A 702718-0000.730 ↓	RO
?K00a→ Serial Number !K00a 209187 →	RO
?KSND→ Acoustic Signal	RW
!KSND a Bit ↓	(a=0:aus, a=1:an)
?KAPO→ Automatic Shutoff	RW
!KAPO a Byte₊J	(a=0:aus, a=1:10
min,	0.20
?KP20→ Compensator	a=2:30 min) RW
!KP20 a Bit ↓	(a=0:aus, a=1:an)
'	
?KSPR→ Vertical Angle Display	RW
!KSPR a Bit ↓	(a=0:Grad, a=1:%)
?KSVR→ Vertical Reference System	RW
!KSVR ZZZZ₊J	(ZZZZ=ZEN : ze-
nith angle,	
	ZZZZ=VERT: vertical angle,
errere L a 11 L a a L 12 1	ZZZZ=HGHT: height angle)
<pre>?KSKO Coordinate System and Display !KSKO ab</pre>	_
a=3:ne	(a=1:xy, a=2:yx,
	b=1:RW-HW, b=2:HW-RW)
?KSMW→ Angle Resolution and Unit	RW
!KSMW 0.0005 gon ↓	
(0.0005/0.001/0.005 gon	
	0.0001/0.0005/0.0010 DMS
	0.0005/0.001/0.005 deg 0.01/0.1/0.5 mil)
?KSMS→ Distance Resolution and Unit	RW
!KSMS 0.001 m →	(0.001/0.005/0.01
m	
	0.001/0.01/0.02 ft)

6-37

Data Management 5 Remote Control

?KSMT↓	J Temperature Resolution and Unit	RW
!KSMT	1 C → (1 C/1 F)
?KSMD↓ !KSMD	Pressure Resolution and Unit 1 hPA → (1 hPa/1	RW Torr/0.1 inHg)
?KSZ ↓ !KSZ	Compensator Run Center in Sighting Dir	ection RW
	Compensator Reading in Sighting Direct 0.00000 gon ↓	ion RO
?Ki ↓ !Ki	J Index Correction 0.00000 gon ↓	RW
?Kc ↓	Collimation Correction 0.00000 gon 4	RW
?KHV ↓	J Hz Rotational Angle 0.00000 gon ↓	RW
?KA ↓ !KA	J Addition Constant	RW
?Km ↓	J Scale 1.000000 ↓	RW
?KP ↓	J Air Pressure 944 hPa ↓	RW
?KT ↓	J Temperature 20 C ↓	RW
?Kih ↓ !Kih	Instrument Height 0.0000 m →	RW
?Kth ↓ !Kth	Reflector Height 0.0000 m →	RW
?KY S↓	Y Coordinate of the Station	RW

-38

Data Management 5 Remote Control

?KX S↓ X Coore	dinate of the Station	RW
!KX S	لہ m 0000.0	
?KN_S↓ N Coor	dinate of the Station	RW
!KN_S	∪ m 0000.0	
?KE_S↓ E Coore	dinate of the Station	RW
!KE_S	∪ m 0000.0	
?KZ S↓		
?KZ S↓	Station Height	RW
!KZ S	لہ m 0000.0	
?KLN1→ Request	for Language	R0
!KLN1	D	

The following parameter Hz takes up a special position:

 $_{
m ?KHz}$ $\,$ the displayed Hz direction is output in the selected format $_{
m !KHz}$ $\,$ 0.00000 gon $\,$ sets the Hz direction to the preset value (here 0.00000 grad)

Designations:

RO parameter can only be read parameter can be read and set

All parameters are output in the selected units, resolutions etc. Parameters can be entered irrespective of the parameters currently set. If call or setting commands include errors of syntax or content, the Elta® R answers with 'E

'.

Recording data lines See Data Formats

Miche	PEC.	Hite	Content of Record	Per	핃		Connents
	1	2	P,C,I	T1	T2	13	
Single mess.	×		dahahahaha coco		羽	ΥΔ	HzV mode, k=1,2,3,4 dep. on V syst.
	×		OCCC PEPEPEPEP	且	出	৸	harizantal distance mode
	×		OCCC PRPREPRP	ß	出	Ř	slope distance mode
	×		OCCC PEPEPEPP	۵	×	Ч	coordinates mode, sequence y.x
	×		OCCC PEPEPEPEP	×	Ā	Ч	coordinates mode, sequence x,y
	×		OCCC PEPEPEPEP	п	Ø	ч	coordinates mode, sequence n.e
	×		OCCC PEPEPEPEP	O	ц	ч	coordinates mode, sequence e e,n
Adjustment c/i	×	×	ADJUST	ΛĶ	¥	·г	k=1,2,3,4 depending on V system
	×	×	ADJUST	招	出	O	
	×	×	ADJUST			Ы	
Adjust. comp.	×	×	ADJUST		128	Ю	
Input values	×	×	INFUT	th	чi		
	×	×	INFUT	٦	Д	₽	
	×	×	INFUT	Ħ			
	×	×	S PEPERPERP	Asi	16	Z	Zstation height
Compensator	×	×	NO-MOO	id.	20		compensator activated
	×	×	OOM-OFF				compensator deactivated
Rec. mode:	i: MEM/ 2: MEM/ 3: 1+2	1: MEM/1, V24/1 2: MEM/2, V24/2 3: 1+2	12 22		20		

K-le	Æ	Pec. arrie	Content of Bound	HE H	Έ		Community
	1	2	P.C.I	TI	T2	23	
Point to line	×	×	PTIINE	0.076	2000	2000	point to line
	×	Mark	A PEPERPERP	8	出	Ř	reference point A
	×		B PEPERPEPEP		出	¥	reference point B
	×		A=5			2 2 2	ined &
	×		B-Q				if station is defined as P
		×	A-B	8	且	प	base length
	×	2	OCCC PRPRPPRPP	ß	出	¥	meas.pt.P
		×	OCCC PRPRPPRPP	Þ	×	ч	meas.pt. P.v.x.e.n dep.on ocor.svs.
	×		P=0				if station is defined as P
- 12		×		×	×	ч	
	8 38			(); ();	,	3%	
Comect.distance	×		CHDIS.				
	×		A PEPERPERP	8	出	Ř	reference point A
	×		OCCOC PREPEREPREPE		出	Ř	meas. pt. P
		×	Å ₽	8	且	৸	connecting distance A-P
	×		L	8	且	ч	connecting distance P-P
	×		A=5				if station is defined as A
			P=5				if station is defined as P
Object height	×	×	OBJECTH		1	3	
	×		A PEPERPERP	8	出	¥	reference point A
	×		OCCC PRPREPREP	200 A CO.	出	¥	meas. pt. P, k=14 dep. on V syst.
		×	OCC PEPEPPEPP	且	0	И	meas. pt. P
	×		ddddddddddd I			И	Set Z value
	×		dddddddddd		出	¥	k=1,2,3,4 depending on V system

Kode	Pec.	Rec. mode	Content of Record	Reco	Ŧ		Coments
400	1	2	P,C,I	II	T2	13	5.04
Vertical plane	X	X	TA-IMA	3	550	0000	40 100 100
AS.	×		A PPEPERPER	ß	出	¥	reference point A
	×		B PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	ß	出	¥	reference point B
		×	4.4	ß	且	Ч	bese length
	×		OCCC PRPERPRPP		出	¥	mees. pt. P. k=14 dep. on V sys.
		×	OCCC PRPERPREPP	Ą	×	ч	mees. ot. P. v.x.e.n deo. on coord.sss.
	×		P=S				if station is defined as P
	×	×	i PEPERPERP			×	set value for (y,n)
	×		PREFERENCE		出	¥	y, x or n dep. on cound.sys.
	×	×	i PRPRRPRPP			ч	Set value for h
	×		PEPERPEPP		出	¥	
		×		Y	×	Ч	
Orthograal lines	×	×	ORT-LINE				20 m
	×		A PEPERPEPP	8	出	¥	reference pt. A
	×		B PEPERPEPP	ß	丑	¥	reference pt. B
	×		A=5				if station is defined as A
	×		B-S				if station is defined as B
		×	44	ß	且	ч	bese length
	×		OCCIO PRPERPREPE	ß	出	W.	meas.pt.P
		×	OCCIO PRPERPREPE	Þ	×	ч	mees. pt. P. y.x.e.n dep. an coard.sys.
	×		P=S				if the station is defined as P
	274 1 1 1 1 1 1 1 1	×		M	×	Ч	

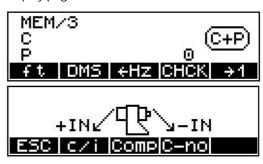
Kode	PBC.	Rec. mode	Content of Record	f Reco	E		Consorts
× 1	T	2	P,C,I	Ţ	T2	23	
Parallel lines	×	×	PAR-LINE		21230	176500100	
	×		A PEPEPEPEP	8	丑	¥	Reference point A
	×		B PEPERPEPE	8	出	¥	Reference point B
	×		C PEPERPERP	8	出	¥	Reference point C
	×		A=S				if station is defined as A
	×		84 84				if station is defined as B
	×		9				if station is defined as C
	1	×	4 - 8	ß	且	Ч	Base length
		×	PA	۵			y, x or e depend. on coord.system
	×		OCCIO PEPERPEPE	121	出	¥	meas.pt. P
		×	OCCIO PEPERPEPE	Ā	×	Ч	mees.jt. P. y.x.e,n dep. on coard. syst.
	×		PS	31			if station is defined as P
		×		Y	×	Ч	
		5000		50 S	1885	50553	
Alignment	×	×	ALIGN		- 5	20047	472 475-0 He
	×		A PEPERPEPE	_	丑	¥	reference direction
	×		PEPERPEPP	6	出	¥	reference distance to P
	×		OCCIO PEPERPEPP	_	出	¥	meas.pt. P.k=1,2,3,4 dep.onVsyst.
		×	OCCC PEPERPERP	Α	×	ч	meas.pt.P.y.x.e,n dep.onocor.
	165					100	syst.
Unknown station	×	×	L-STAT 1				
		×	A PEPERPEPE	Ā	×		reference point A
	×		A PEPEPEPEP	B	出	¥	measurement to A
		×	B PEPERPEPE	Ā	×		measurement to B
	×		B PEPEPEPE	8	出	Ř	measurement to B
	3	×	S PEPERPERP	Ā	×		station coordinates
	20	×		Ħ	ð		scale, orientation

Marie	EG.	Bc. arde	Content of Board	f Rem	E		Consents
	1	2	P,C,I	T	T2	T3	
Known station	×	×	L-STAT 2				
		×	S PEPERPEPE	¥	M		station coordinates
		×	A PEPEPEPEP	№	×		reference point A
	×		A PEPEPEPEP	0	丑	ΨK	measurement to A (Hz,V mode)
	×		A PEPEPEPEP	8	出	ΨĶ	measurement to A (D.Hz,V mode)
	3	×			ర్	9	orientation (Hz.V)
	8	×		Ħ	ð	5	scale, crientation (SD.Hz.V)
Height stationism	×	×	TRZ-STAT			637	
F 1	×	×	i PREMEREP	0		Z	Height of A
	×	9	A PEPERPEPE	8	出	¥	Measurement to A
		×	S PRPREPREP	0		Z	computed station height
Polar points	×	×	POLARP				
	×		COCCEPPEPERE	ගි	出	¥	original readings
	1	×	CCCCPPEPEPEP	A	×	Z	ocordinates

Adjusting and Checking

The instrument adjustment defines all corrections and correction values for the Elta® R that are required to ensure optimum measuring accuracy.

1 Introduction	7-2
2 V Index / Hz Collimation	7-3
3 Compensator	7-6


1 Introduction

Increased strain placed on the instrument by extreme measuring conditions, transportation, prolonged storage and major changes in temperature may lead to misalignment of the instrument and faulty measuring results. Such errors can be eliminated by instrument adjustment or by specific measuring methods.

Display page 2:

CHCK

to go to menu "Checking"

Presettings
First steps

Additionally to activating and deactivating the compensator, this menu offers the following functions of checking and adjusting:

c/i

Determination of the vertical index correction (V index) and sighting axis correction (Hz collimation).

Comp

Determination of the compensator run centre.

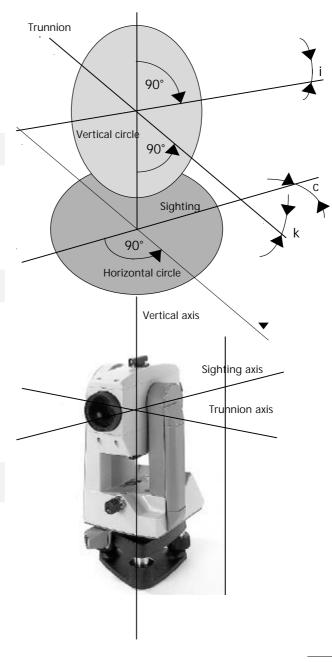
d Attention !

Before starting any adjustment, allow the instrument to adapt to the ambient temperature and make sure it is protected against heating up on one side (sun radiation).

i Vertical Index Correction

The vertical index error is the zero point error of the vertical circle with respect to the vertical shaft.

c Sighting axis correction


The sighting axis error is the deviation from the right angle between the trunnion axis and sighting axis.

k Trunnion axis correction

The trunnion axis error is the deviation from the right angle between the trunnion axis and vertical shaft (adjusted by the manufacturer).

Another instrument error considered is:

the compensator run centre error

The vertical index and sighting axis corrections should be recomputed after prolonged storage or transportation of the instrument, after major temperature changes and prior to precise height measurements.

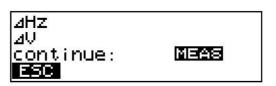
These determinations are especially important due to the fact that the measurement is carried out only in the 1st telescope position in order to save time.

Before starting this procedure, precisely level the instrument using the level.

To determine the corrections, sight a clearly visible target in Hz and V from a distance of approx. 100 m. The sighting point should be close to the horizontal plane (in the range $V=100^{grads}\pm10^{grads}$).

MEAS to trigger measurement in the 2nd telescope position

c=0


Setting of values c = i = 0.

The current ${\bf c}$ and ${\bf i}$ values are displayed in the readings window.

c sighting axis correctioni vertical index correction

MEAS to trigger measurement in the 1st telescope position

new

to confirm the new values / to record

old

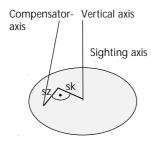
to confirm the old values

Display of results and recording

Recording to Adr.: 33

Attention !

During the computation of the vertical index and sighting axis correction, the program also determines the compensator run centre.


If either the $\bf c$ or $\bf i$ value exceeds the admissible range of \pm 50 mgrads, the error message appears. The values are not saved, and the menu for new calculation is displayed again.

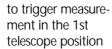
Attention!

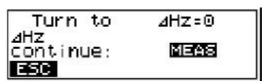
If the values remain outside the tolerance range, despite accurate sighting and repeated measurement, you should have the instrument checked by the service team.

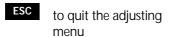
Adjusting

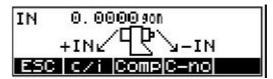
3 Compensator

The Elta® R features a compensator that <u>compensates</u> any vertical shaft inclinations remaining <u>after</u> instrument levelling in the sighting axis direction.


To check the compensator, its run centre should be determined at regular intervals and in particular prior to precise height measurements.


MEAS to start measurement in the 2nd telescope position


sz component in sighting axis direction



Display of results and recording:

d Attention !

For the accurate determination of the run centre, it is essential that the liquid in the compensator is allowed to settle, i.e. any vibration of the compensator must be avoided.

The annex contains a compilation of symbols, keys, formulae, constants and error messages as well as explanations of concepts used for the Elta® R Routine Total Stations.

Furthermore, it gives an overview of the technical data and instructions for maintenance and care of the instrument.

1 Overview Softkeys	8-2
2 Overview Key Functions	8-6
3 Geodetic Glossary	8-7
4 Technical Data	8-13
5 Formulae and Constants	8-19
6 Error Messages	8-24
7 Maintenance and Care	8-26
8 Extended Temperature Range	8-28

Annex 1 Overview Softkeys

HD	Setting the measuring mode: Measurement of reduced distances
xyh yxh	Coordinate measurement, sequence X,Y, h Coordinate measurement, sequence Y,X
neh enh	Coordinate measurement, sequence N,E Coordinate measurement, sequence E,N
SD HzV	Measurement of slope distances Measurement of Hz direction and V angle
Hz=0	Setting the Hz direction to Hz=0
HOLD	Clamping the Hz direction for electronic circle orientation
END	Ending a function
<u> </u>	Input of reflector, instrument and station heights
th/ih th	Input of reflector height
ih/Zs	Input of instrument and station heights
→ 1 → 2	Calling page 1 of the measurement menu Calling page 2 of the measurement menu
m ft	Changing the distance unit: to meters/entry of scale to feet
gon DMS deg mil	Changing the angle unit: to grads to DMS (degrees, minutes, seconds) to decimal degrees to mils
V %	Display of the height angle in %
۷ Ł û	Display of the zenith angle (V=0 at the zenith)
٧٦ _û	Display of the vertical angle $(V=0 \text{ at the horizon, } 0 < V < 400 \text{ grads})$

∀ 7∧ ₹	Display of the height angle $(V=0 \text{ at the horizon, } -100 < V < 100 \text{ grads})$
→Hz ←Hz	Setting the Hz counting direction to clockwise Setting the Hz counting direction to anticlockwise
СНСК	Calling the checking and adjustment menu
ESC	Terminating a function, quitting a submenu
↑	Selecting the next upper line in the bar menu / in the internal memory Selecting the next lower line in the bar menu / in the internal memory
← →	Setting the cursor one character backward Setting the cursor one character forward
	Incrementing a value Decrementing a value
MOD	Modification of the displayed value
o.k.	Confirmation of an entry
YES NO	Acceptance of an option Rejection of an option
c/i	Calling the function for the determination of the collimation and vertical index correction
Comp	Calling the function for the determination of the compensator run centre correction
C-on C-off	Deactivating the compensator Activating the compensator
old new	Retaining the old value Entering the new value
Rept	Repeating the process
i=0	Setting the vertical index correction to $i = 0$
c=0	Setting the collimation correction to c=0

Annex	1 Overview Softkeys
АВС	Activating the reference point A, B, C
Р	Activating the new point P
A=S B=S C=S	Using the station coordinates as reference point coordinates
P=S	Using the station coordinates as the coordinates of the new point
A=P	Using P as the new reference point A (connecting distance)
у х е	Input of a distance (in the Vertical Plane program)
hSet	Setting the reference height (in the Vertical Plane program)
ZSet	Setting the reference height Z (in the Object Height program) $\mbox{\footnote{T}}$
xSet ySet nSet	Setting the reference direction: (in the Vertical Plane program) (in the Vertical Plane program) (in the Vertical Plane program)
A-P P-P	Referring the connecting distance to: the reference point A the last point used
Inp	Input of a value
m	Calling the scale entry (in the Coordinates programs)
EN NE	Setting out according to nominal coordinates without height or entry in MEM
YXZ XYZ	Setting out according to nominal coordinates with height or entry in MEM

ENZ NEZ

HD	HDh	Setting out using known setting out elements without with height
Z		Input of a height in the internal MEM memory
Z-j	Z-n	Changing to setting out: with height without height
Test		Calling the measurement of the setting out points
S-O		Calling the setting out of the next point
Stat		Starting stationing in elevation
S		Input of station coordinates for Unknown Station
Inp		Input of scale for planimetric stationing
Hz		Input of Hz for Known Station
Disp	Del Edt	Display of data lines of the memory Deletion of data lines of the memory Changing the point number and point code of a data line
?	?P ?C	Search for: data lines in the memory a point number in the memory a point code in the memory
?A		Search for an address in the memory
? ↓		Continue search according to the same criterion
all		Selecting all data lines of the memory

Annex	2 Overview Key Functions
MEAS	First function Starting a measurement
ON	First function Switching the instrument on
ON: OFF	Second function Switching the instrument off
ON *	Second function Illumination ON/OFF
ON EDIT:	Second function Calling the memory and the Elta® R 45, 55 battery capacity
ON PNO	Second function Calling the input of point number and code and the Elta® R 50 battery capacity
ON MENU	Second function Going to the main menu
ON TRK	Second function

Starting the tracking function

Annex	3 Geodetic Glossary
	A
Addition constant	Addition value for distance measurement, default 0.
Addition correction	Correction of the addition value ("addition constant") of the distance measuring instrument, e.g. if using prisms of other manufacturers.
Alignment	Application program for the determination of any number of points on the straight line AB.
	В
Backsight point BP	A point with known coordinates used for the station point determination and/or for <i>orientation</i> .
Bearing angle	Hz bearing orientated to a reference bearing (generally to grid north).
Bearing (Hz)	Value read in the horizontal circle of the instrument, whose accidental orientation is determined by the zero position of the graduated circle.
	С
Calibration scale	Influences systematically the distance measurement. Best possible adjustment to 1.0 by the manufacturer. Without influence on all other scale specifications.
Code, code number	Reference number for the point description, characterises certain point types.
Compensation	Automatic mathematical consideration of the <i>vertical axis inclinations</i> measured with the <i>compensator</i> in the sighting direction, in V angle measurements.

Used to determine the current vertical axis

inclination in the sighting axis direction, can be deactivated and activated again, as required; a graphical symbol in the information menu di splays the activated compensator.

Compensator

Annex	3 Geodetic Glossary
Compensator run centre	Electronic centre of the clinometer in sighting axis direction.
Connecting distance	Spatial distance, plane distance and height difference between 2 target points.
Control point	Point for checking the <i>orientation</i> of the instrument. It is defined at the beginning of a measurement and can be measured at any time for checking.
Coordinates	Measuring program for the determination of points in a higher-order coordinate system.
	D
Default	Standard value for an instrument setting.
Distance measuring mode	Depending on the purpose of application, the distance measurement is to be selected by pressing the MEAS key in the normal mode or the continuous distance measurement (tracking) is to be selected by pressing the ON+TRK keys simultaneously.
	E
Error limits	Limit values which can be set by the user for certain readings or results.
	F
	G
	н
Hardkeys	See key functions.
Height stationing	The height of the station point is derived from measurements to known height points.
Hz circle orientation	A predefined horizontal bearing value is allocated to the sighting direction to a measurement point.
Hz collimation correction	(also called collimation or sighting axis correction) Correction of the deviation of the sighting axis from its required position right-angled to the

Annex	3 Geodetic Glossary
	trunnion axis. Determination by measurement in two positions, automatic correction in the case of measurements in one position.
Incrementing	(increment = interval) Automatic counting of the point number (increase by 1) after the measurement.
Instrument height	Height of the telescope trunnion axis above the station height (ground point).
Interface	Contact point between 2 systems or system a reas, in which information is interchanged according to defined rules.
	K
Key functions	First and second functions; for switching the instrument on, starting the measurement, switching off, illuminating the display, calling the memory, entering PI and going to the main m enu, starting of tracking.
	L
Levelling	Vertical adjustment of the vertical axis of the instrument; the levels of the instrument are ce ntred by turning the tribrach screws. The levelling can be checked by means of the digital display of inclinations after pressing the softkey CHCK.
	M
Measuring mode	In the measurement menu, the following measuring modes can be selected: HzV display in the theodolite mode HD display of reduced distance and height difference yxh local rectangular coordinates SD display of the original readings

3 Geodetic Glossary
0
Determination of the height of points to which a direct distance measurement is impossible, by means of an angle measurement.
When orientating the instrument, the bearing angle of the zero of the graduated circle Omega (Om) is calculated. For this purpose, measur ements to a backsight point can be made or the bearing angle of a known point can be e ntered.
Application program to check lines for orthogonality, setting out right angles and especially for measurements in the case of visual obstacles.
P
Application program to check the parallelism of straight lines or for setting out parallels with only one point given.
Identification of the measured point by a maximum of 12 characters for the point number and up to 5 for the point code.
Part of the point identificacion.
Application program for the determination of rectangular coordinates of any point in relation to a straight line defined by the points A and B.
Determination of the coordinates and height of new points by distance and bearing measur ement.
Q

Annex	Geodetic Glossary
	R
Recording mode	Selectable in the menu Interface/Recording: Off no recording MEM/1 Recording of measured data sets in MEM (not for Elta® R 50) MEM/2 Recording of computed data sets in MEM (not for Elta® R 50) MEM/3 Recording of all data sets in MEM (not for Elta® R 50) V24/1 Recording of measured data sets through V24 V24/2 Recording of computed data sets through V24 V24/3 Recording of all data sets through V24
Reference point	Used here as reflector station for the indirect height determination.
Reflector height	Height of the reflector (prism centre) above its station (ground point).
Refraction coefficient	Measure for the light-beam refraction in the atmosphere; can be set by the user.
Run centre	See Compensator run centre. S
Scale	With a <i>scale</i> , the measured distance is varied proportionally to the length and can thus be adapted to certain marginal conditions. There exist a series of direct and indirect scale effects: <i>calibration scale</i> , <i>projection reduction</i> , <i>height reduction</i> , <i>reticle scale</i> .
Softkey	Function key which has several functions in dependence on the program.

Standard measurement

menu

The determination of points takes place within the

local measuring system. The station of the instrument with the coordinates (0,0,0) represents the zero point of this system of coordinates. The *orientation* is determined by the zero direction of the Hz circle. The data are fitted in a given system

Annex	Geodetic Glossary
	of coordinates (Elta® R 50) only during the further processing (possibly in the office) or a stationing is carried out in order to measure in a given system of coordinates.
Standard settings	Values set by the manufacturer for all configuration parameters.
Stationing	Precedes any determination of points in a defined system of coordinates. Consists in the station point determination and/or calculation of the orientation of the graduated circle: Stationing on a known or unknown point (free stationing), height stationing (height only).
Stationing on a known point	Given: Station point coordinates / backsight bearing. The <i>scale</i> and the <i>orientation</i> of the graduated circle are derived from the measurements to known <i>backsight points</i> .
	T
Tracking	Continuous measurement of angles and distances. Hz and V values are constantly measured and displayed. Set permanent measurement for distance measurements.
	V
Vertical axis inclination	The inclinations of the vertical axis of the instrument in sighting axis direction are measured with the <i>compensator</i> , indicated digitally and can be requested on the di splay.
Vertical plane	Application program for the determination of points in a vertical plane by means of an angle

measurement. W Z

-12

4 Technical Data	
Elta® R 45	Elta® R 55 Elta® R 50
1.0 mgrad (3") 3 mm+3 ppm	1.5 mgrads (5") 5 mm +5 ppm
26 x 40 mm 193 mm 2.9 m 1.75 m variable reticle illumination, integrated sun shield	
electronic, incremental, quasi-absolute with zero encoder 360° (DMS, DEG), 400 grads, 6400 mils zenith, height and vertical angle, slope in percent	
1 ^ /2 ^ /10 ^ ^, 0.0005°/0.002°0.005° 0.2 mgrad/1 mgrad/5 mgrads 0.01 ⁻ /0.1 ⁻ /0.5 ⁻	
	0.0005°/0.001°0.005° mgrad/1 mgrad/5 mgrads 0.01°/0.1°/0.5°
	20. 1.0 mgrad (3") 3 mm+3 ppm 20. 1.7 variable retick integrated integrated integrated 2.0 (1.7) variable retick integrated 2.0 (1.7) variable variable 2.0 (1.7) variable variable 2.0 (1.7) va

_					_
n	icta	nca	measu	Iron	nont
u	ısta		HICASU	41 CH	וכוונ

Method Transmitter/Receiver optics Measuring units	electro-optical, modulated infrared light coaxial, in telescope alternate display of results in m/ft	
Measuring time		
Standard Tracking	< 3.0 s	

4 Technical Data

Elta® R 45, Elta® R 55, Elta® R 50

Measuring range		
with 1 prism with 3 prisms	1500 m 2000 m	1300 m 1600 m
Levelling		
Circular level Tubular level	10′/2 mr 30"/2 mr	
Compensator		
Type Working range Accuracy	uniaxial compe 2'40"/48 mç 1,5"	
Clamps and tangent		
screws	coaxial, paralle	el axes
Optical plummet		
Magnification Shortest sighting distance	2 x 0.5 m	
Display screen		
	4 lines with 21 characters each, graphic capabilities (128 x 32 p ixels) display illumination	
Keyboard		
	7 keys, display-oriented	
Measuring menu		
	Hz-V/SD-Hz-V/HD- setting, input, ad	3
Application programs (supported by graphics)	connecting distances, object h vertical plane, point-to orthogonal lines, parallel lin	-line distance,

Annex	4 Technical Data	
	Elta® R 45 Elta® R 55	Elta® R 50
Coordinates programs		
(supported by graphics)	unknown station, known station, stationing in elevation, polar points, setting out	
Recording		
	internal data memory - (approx. 1900 data lines)	
	externally via RS 232 switchover in the menu i slip ring on stati	nterface/recording,
Power supply		
	NiMH battery pack 6 V/1.1 Ah; sufficient for approx. 1000 angle and distance measurements	
Operating temperatures		
	-20°C to +	-50°C
Dimensions	173 x 268 x 1	102 mm
Instrument (WxHxD) Trunnion axis height with	173 X 208 X	193 11111
DIN centring spigot/ Wild centring	175 mm/19	96 mm
Weights		
Instrument incl. battery and tribrach Case	3.5 k <u>(</u> 2.5 k <u>(</u>	

Electromagnetic Compatibility (EMV)

Die EU Conformity Declaration confirms the perfect function of the instrument in an electromagnetic environment.

d Attention !

Computers connected to the Elta® R which are not part of the Carl Zeiss System delivery, have to meet the same EMV requirements in order to ensure that the overall configuration complies with the applicable interference suppression standards.

Interference suppression as per: EN 55011 class B

Noise immunity: EN 50082-2

☞ Tip

Strong magnetic fields generated by mid and low voltage transformer stations possibly exceed the check criteria. Make a plausibility check of the results when measuring on such conditions.

Battery Charger LG 20

Battery Management

Electrical and thermo-mechanical fuses protect instrument and battery during the oper ation and the battery during the charging pro cess.

Change of battery after warning:

connect a charged external battery and remove the empty internal battery from the instrument (or vice versa for empty external battery). Switch the instrument off for as long as the power supply is interrupted for the battery change.

Technical Data

Universal charger for NiCd/NiMH cells of safety

class II with

nominal capacity: 0.5 Ah to 7 Ah.

input: $230 \text{ V} \pm 10 \% 50 \text{ Hz}$ or DC 12 V output: 9.00 V; 800 mA or

2000 mA DC, resp.

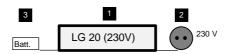
Safety Notes

Attention!

Please, read and observe these operating instructions before using the LG 20!

Protect the LG 20 against humidity, use it in dry rooms only.

Only the service or authorised specialists are allowed to open the LG 20.


Charge temperature range: 5° to 45°C; optimum: 10° to 30°C.

Charge parameters (nominal charging time, charging current) set automatically by a coding resistor (in battery pack) \Rightarrow no overcharging, protection of instrument and battery.

For operating the LG 20/1 with a 12 V battery, the cable (70 84 10 - 000.000) with integrated fuse link delivered by the manufacturer is to be used unconditionally!

Charging the Battery

Connect the power source with the battery as demonstrated in the following picture. Note, that the voltage of the charging unit is identical with the power source.

Start charging

LED flashing 3x yellow Starting

Charging procedure

LED flashing green (max. 1.5 h)

Charging of a fully charged battery: the charging process is stopped after approx. 5 minutes. If the temperature is too high or too low the charging process is stopped automatically

LED permanently red

the charging process is stopped; if the charging temperature range is reached again the charging process is resumed

End of charging process

LED permanently green Trickle charge

The batteries cannot be overcharged.

LED permanently yellow Stand-by mode (no battery connected)

Computational Formulae for Angle Measurements

V angle measurement

$$V_k = V_0 + i + SZ_a$$

V_O = uncorrected V circle reading

i = index correction

 SZ_a = current vertical axis inclination in the

sighting direction

Hz bearing measurement

$$Hz_k = Hz_0 + Hz_1 + A$$

Hz_O = uncorrected Hz circle reading

 $Hz_1 = collimation correction$

$$Hz_2 = c/\sin V_k$$

$$= -\sin(V_{\parallel}) \cdot \frac{dHz}{2}$$

A = circle adjustment for orientation

Computational Formulae for Distance Measurements

$$D_k = D_0 \cdot M_i + A$$

 D_k = corrected distance

 D_0 = uncorrected distance

A = addition constant

M_i = influence of meteorological data

Influence of meteorological data:

$$M_i = (1 + (n_0 - n) \cdot 10^{-6}) \cdot (1 + (a \cdot T \cdot T) \cdot 10^{-6})$$

n = current refractive index

 $= (79.146 \cdot P)/(272.479 + T)$

 n_0 = reference refractive index = 255

P = air pressure in hPa or torr or in Hg

T = temperature in degrees C or degrees F

a = coefficient of vapour pressure correction

= 0.001

carrier wavelength 0.86 microns modulation wavelength 20 m precision scale 10 m

Reduction Formulae

Slope distance SD

Distance between the instrument's trunnion axis and the prism. It is computed from the measured slope distance and the entered scale:

$$\mathsf{SD} \! = \mathsf{D}_k \cdot \mathsf{M}$$

SD= displayed slope distance

 D_k = basic distance

M = scale

Horizontal distance HD

$$HD = (E_1 + E_2) \cdot M$$

HD= displayed horizontal distance

$$\mathsf{E}_1 \! = \mathsf{D}_k \cdot \mathsf{sin} \, (\, \mathsf{Z} \, + \, \mathsf{R} \,)$$

R = influence of refraction

$$=6.5\cdot 10^{-7}\cdot D_{\mathbf{k}}\cdot \sin{(\mathbf{Z})}$$

 E_2 = influence of earth curvature

$$= -1.57 \cdot 10^{-7} \cdot dh \cdot D_k \cdot sin(Z)$$

 D_k = corrected slope distance

Z = measured zenith angle [grads]

M = scale

Difference in elevation h

$$h = dh_1 + dh_2$$

h = displayed difference in elevation

$$dh_1 = Dk \cdot cos(Z)$$

$$dh_2 = (Dk \cdot sin(Z)) \cdot (Dk \cdot sin(Z)) 6.8 \cdot 10^{-8}$$

= influence of earth curvature and r efraction (k = 0.13)

Distance reduction to MSL

Distances measured at elevation Z can be red uced to MSL by computing the following scale outside the instrument (computation formula applies to all earth radii):

$$m = R/R+Z$$

$$\mathsf{S}_2 = \mathsf{S}_1 \ \cdot \ \mathsf{m}$$

 $\begin{array}{ll} R &= \text{earth radius (6370 Km)} \\ Z &= \text{elevation above MSL (Km)} \\ S_1 &= \text{measured distance at elevation Z} \end{array}$

 S_2 = reduced distance at MS L

If this scale is entered into the Elta® R, the computed distances are reduced directly in the instrument.

Verifying on Calibration Distances

Basically, all measured distances are corrected with reference to: the entered scale, the entered addition constant, the influence of pressure and temperature, internal influencing variables.

d Attention!

Prior to the practical realisation of the calibration measurement, the current values of the parameters scale, addition constant, pressure and temperature are to be e ntered. The scale is to be set to default: 1.000000. This is to secure that all corrections are made completely and perfectly. Furthermore, this allows a direct compar ison of nominal and actual values in the case of given distances.

If a weather correction is to be carried out externally, the temperature must be set to 20°C and the air pressure to 944 hPa. Then, the internal correction goes to zero.

Prism and Addition Constants

All total stations manufactured by Carl Zeiss, in combination with their reflectors are adjusted with the **addition constant 0.000**.

In case of measurements to reflectors of other manufacturers, a possibly existing addition constant can be determined by measurement and entered.

Another possibility consists in calculating an addition constant by means of the known prism constant of the reflector used and entering it. This prism constant is calculated as function of the geometric value of the prism, the type of glass and the place of the mechanical reference point. The prism constant for Carl Zeiss reflectors determined that way is -35 mm.

Relation between the addition constant Acz for Zeiss instruments, the prism constant Pcz for Zeiss reflectors and the prism constant P $_{\rm f}$ for other manufacturers:

$$A_{CZ} = P_F - P_{CZ}$$

Example:

Zeiss reflector prism constant P_{CZ} = -35 mm

Foreign reflector prism constant $P_r = -30 \text{ mm}$

Addition constant for Zeiss instruments in connection with this

foreign reflector $A_{C7} = +5 \text{ mm}$

In this case, in the Elta $^{\circledR}$ R the addition constant + 0.005 m is set.

Error Message

What to do

001

ROM error

002

RAM error

003/004

Data EEPROM was initialised

005/006

Data EEPROM error

If errors 001...006 occur, call the service. It is not advisable to continue the measurement as all basic settings of the instrument may have been changed.

40 - 59

Error in dist. measuring unit

If this error occurs repeatedly, please inform the service.

202

Compensator oper. range exceeded

Relevel the instrument.

If the instrument is in the angle tracking mode or any measuring program based on it, error me ssage 202 is not displayed. Instead, the digits after the decimal point in the displayed angle readings are replaced by dashes.

410

MEM not initialised!

Initialisation can only be performed by service staff

411/412

Defect in system area Work with the data memory is not possible, call the service

413

Defect in system area, reading is possible

415

MEM reading error

416

MEM writing error

In the event of error messages 413...416, try to save the content of the data memory by transmission to the PC. If the error occurs again when recording is repeated, call the service.

Error Message

What to do

417

MEM is full

Read out the memory content, delete the memory.

418

Point code not found

419

Point number not found

Correct the entry.

581

Transmission error (in data transmission)

584

Transmission time out (in XON/XOFF protocol)

584

Transmission time out (in XON/XOFF Rec 500 protocol)

587

I/O time out, Rec 500 protocol

588

REC 500 protocol error

If the general recording errors 518...588 occur, first try to repeat recording. If the error occurs again, check the interface parameters, the cable and the recording program at the other end.

[™]Tip

If the warning "inadequate geometrical conditions" is ignored in the application programs, the last digit of the displayed values is replaced by 3 dots. If a recording error occurs, the last data line has usually not been transmitted.

Instructions for Maintenance and Care

Instrument Allow sufficient time for the instrument to adjust

to the ambient temper ature.

Use a soft cloth to remove dirt and dust from the

instrument.

When working in wet weather or rain, cover the

instrument during longer breaks with the

protective hood.

Object lens and eyepiece Clean the optics with special care using a clean and

soft cloth, cotton wool or a soft brush, do not use

any liquid except pure alc ohol.

Do not touch the optical surface with the fingers.

Prisms Steamed prisms must have sufficient time to adjust

to the ambient temperature. Remove a fterwards

the moisture using a clean and soft cloth.

Transportation For transportation over long distances, the

instrument should be stored in its case.

When working in wet weather, wipe the instrument and case dry in the field and let it dry

completely indoors, with the case open.

If, for the purpose of changing the station, the instrument with the tripod is transported on the shoulder, please make sure that instrument and

person will not be damaged or i njured.

Storage Let wet instruments and accessories dry before

packing them up.

After a long storage, check the adjustment of the

instrument prior to use.

Observe the boundary values for the temper ature of storing, especially in the summer (interior of the

vehicle).

Keeping the Measurement System in the Case

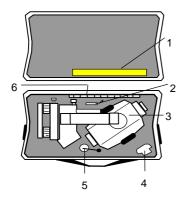
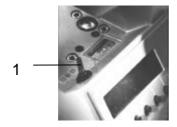


Fig. 1: Instrument case Elta® R 45, Elta® R 55, Elta® R 50

- 1 Protective hood
- Adjusting tools:
 Pin for adjusting the optical plummet,
 Pin for adjusting the clamping power of the tripod legs
- 3 Instrument
- 4 Battery
- 5 Plumb line
- 6 Operating instructions

Using the Instrument in the Low Temperature Range to -35°C

For surveying in extreme climatic conditions, a version of the instrument suitable for an extended temperature range to -35° is available, broadening the operative range of the Routine Total Stations considerably as far as seasons and geographical features are concerned.


Due to the heated display, the instrument works just as in the normal temperature range. The required heating energy is provided by the external battery.

For operations in low temperatures change switch 1 over to external battery •

(external battery)

• 🗆 🜓 🖭

(internal battery)

The heating switches on automatically at about -10°C.if the instrument is connected with the external battery.

The external battery provides energy for about 8 hours at -35°C.

ZSP Geodetic Systems GmbH Tatzendpromenade 1a D-07745 Jena

Phone: ++49 3641 64-3200 Telefax: ++49 3641 64-3229 E-Mail: surveying@zeiss.de

http://www.zeiss.de