TPS - System 1000

Version 2.2
English

Leica

The quick way to start with TPS-System 1000.

雷
To use the equipment in the permitted manner, please refer to the detailed safety instructions in the user manual.
© 1997 Leica Geosystems AG Heerbrugg, © All rights reserved.
\rightarrow The first contact 4
Instrument description 4
Charging battery 5
Centring with the laser plummet 6
Levelling up with the electronic bubble 7
The operating concept 8
Display / keyboard 8
Measuring angles and distances 10
Elements of measurement 11
Measuring angles and distances separately 12
ξ Basics of measuring / recording 13
Memory card 13
Formatting a memory card 13
Setting up the station / orientation to backsight 14
Measuring and recording 16
Recording coordinates 17
Target point data (ppm/prism/offset) 18
Coding 19
$400-$ Additional functions 20
EDM measuring program 20
Automatic target recognition ATR1 (option) 21
Illumination 22
. 2 . Configuration 23
Functionality 23
User configuration 24
Selection of the user template and recording mask 25
Predefined recording templates 26
Units, language 27
GSI storage format 28
\pm Application programs 29
Practical example 29
Entering coordinates 31
Setting up a station by entering an azimuth 32
Stakeout 34
Resection 37
Reference line 40
둘물 Organization of menu 42

Instrument description

1 Footscrew
2 Keyboard
3 Display
4 Optical sight
5 Carrying handle
6 Telescope with EDM (for TC) or with EDM + ATR (for TCA).
EGL1 is optional
7 Coaxial optics for angleand distance measurement
8 Vertical drive screw
9 Horizontal drive screw
10 Battery housing
11 Tribrach securing knob
12 Bull's-eye bubble
13 Memory card housing
14 Flashing left diode, yellow
15 Flashing right diode, red
16 Laser plummet; TPS 1000 with option L

Charging battery

Centring with the laser plummet

The laser plummet is incorporated into the vertical axis of those TPS1000 instruments which have the suffix "L". A red laser dot projected on the ground makes it much easier to centre the instrument.

ON/OFF

The laser plummet switches off automatically after 3 minutes.

The instrument can be levelled up using the footscrews, without having to turn it through $90^{\circ} / 180^{\circ}$.

The operating concept

The "running info-bar" indicates that additional information is available in the active dialog.

ON Switches instrument ON/OFF.
 OFF

F6 Dialog-dependent function keys; functionality is indicated in last line of display.

${ }_{-}{ }^{F 6}$ Second level of the function keys.
F1 On-line help for current dialog; always available.
$\bigcirc \uparrow$ Control keys, to set the cursor bar and scroll through the dialog.

CONT Confirms dialog with values set and continues to next dialog.

Confirms input. Input values are:

- values selected from list field
- manual input

Returns to previous display. Values altered in dialog are not accepted.

Deletes last character entered.

Measuring angles and distances

Elements of measurement

$\mathrm{Hz}=$ Horizontal angle $\mathrm{V}=$ Vertical angle

Measuring angles and distances separately

Measuring to inaccessible points.
${ }^{-}$F6

MEAS \MEASURE MODE (GSI)			1			
Point no.			1			0
Remark 1			---			
Refl.Height			600	m		
Hz		$259^{\circ} 42$	23"			
V		$88^{\circ} 02$	13"			
Horiz. Dist.		12	254			
ALL DIST	REC	TARGT	HzØ			

Triggers distance measurement.

The vertical angle is retained after the distance measurement.
You can now determine the Hz angle of the inaccessible point.

Basics of measuring / recording

Memory card
The measurements are stored in the GSI directory on the memory card.

Formatting a memory card

When the memory card is formatted, all data on the card are irretrievably deleted !!!

Setting up the station / orientation to backsight

Orientation options:

- orientation using coordinated points
- by entering the azimuth (see example on page 32)
- with the help of the program "Orientation and Height Transfer".

Select:

- the user configuration (see section "Configuration")
- a measuring file to store data
- a data file to call up coordinates.

SETUP\1-PT.	ORIENTATION	ON 14:03	\square
Station		1	
Backsight		CHURCH	
Inst.Height		1.500 m	
Refl.Height		0.000 m	
$\Delta \mathrm{Hz}-\mathrm{Dist}$		----- m	
ALL DIST	REC	INPUT 0	ONUM

- Enter the station number.
- If coordinates are present in the data file, press $\underset{\bullet}{\bullet}$ to start the search, or
- Press ${ }_{\bullet}{ }^{F 5}$ for manual entry of coordinates.
- Enter "Backsight" ("CHURCH").
- Enter instrument and reflector height.
- Aim at the backsight.

${ }_{-}^{\text {CONT }}$ sets the station coordinates, and calculates and sets the orientation.

The recorded values are not necessarily the same as the displayed values.
The recorded values can be inspected:
${ }_{\bullet}^{\text {ESC }}{ }_{-}^{\text {F4 }}$: Enter point number and enter number of measurement file.
${ }^{\text {F5 }}$: Starts search, displays point data.

Recording coordinates

In the as-delivered instrument, angle and distance are routinely recorded ("Polar" template).
To record coordinates:

For a detailed description of the recording template, see page 26.

Target point data (ppm/prism/offset)

1. Enter air pressure and temperature; ppm total is calculated
or
2. enter ppm total directly

Direct input of:

- increment for running point number
- running point number
- reflector height

Coding

${ }_{\ominus}^{C O D E}$ is active in the measurement dialog and during manual data input.

In the standard setting, the code is freely definable, and can be used to record seven additional pieces of information.
(-) User-defined code lists can be compiled with the "Code Developer" utility or with a Geobasic program.

EDM measuring program

Select the EDM measure mode.
Depending on the instrument, the selection can be:

${ }_{-}{ }^{\text {F2 }}$ Precision measurement
${ }^{\circ}{ }^{F 5}$ Average

$\overline{\text { Automatic target recognition }}$ Measuring with ATR1:

ATR1 (option)

Target the prism approximately. No focusing is needed. If a distance measurement is triggered, the fine-targeting is performed automatically.

The ATR1 resolution is automatically defined when the appropriate EDM measuring program is selected.

Confirms values.
Same procedure for crosshair (press \square F2) and for the two options laser plummet (press $\bullet_{\bullet^{F 3}}$) and EGL (press $\bullet_{\bullet^{F 4}}$).

Configuration

Functionality

In its standard configuration, the instrument starts with a reduced range of functions. You nevertheless have access to the important functions which you need for surveying.
You can switch to the complete range of functions.

For more information about the functionality, please refer to the user manual.

In the user configuration the following parameters are set:

- Instrument configuration and units
- Recording template: this determines what data are recorded on the memory card
- Display template: this determines what data are displayed in the measurement dialog.

You can define appropriate user settings for various applications, e.g. industrial surveying or cadastral surveying.

First activate the access to the user settings in the functionality dialog (page 23).

```
Enable user configurat. : YES
```

Selection of the user template When a specific user template is chosen, a predefined recording and recording mask mask is assigned automatically.

Select the "Polar (Standard)" to select the template from the list, and confirm with

Predefined recording templates There is a choice of three predefined recording templates.

	Polar	Cartesian	Polar+Cartesian
1	Point number	Point number	Point number
2	Hz	Easting	Hz
3	V	Northing	V
4	Slope distance	Height	Slope distance
5	ppm/mm	empty	Easting
6	empty	empty	Northing
7	empty	empty	Elevaton
8	empty	empty	ppm/mm
$9-12$	empty	empty	empty

The data are stored in the sequence which is defined in the recording template. (not sorted!)
(-) The predefined recording templates can be modified with \square

Units, language

The instrument configuration and unit configuration can be modified by pressing $\bullet^{\text {F4 }}$. The configuration values are automatically stored in the user template selected.

Select the required parameter, open the list with \square ${ }^{F 6}$, select, and then confirm choice with
 Stores the values, returns to the main menu.

The standard setting of the vertical angle is the zenith angle. Using $\bullet^{\text {aF... }}$, this setting can only be altered when in full functionality mode.

There is a choice of two GSI formats; they have different word lengths. The selection is made in the "User Configuration" (page 24).

GSI-8
8-character point names
5-character coordinates with
3 decimal places
WI AI DA BL

* Tag in front of each GSI-16 data block.

WI Word index
AI Additional information
DA Data
BL Blank $=$ separating character

Application programs

A practical example illustrates some of the most frequently-used survey programs.
A piece of chalk and/or a string are useful for working through the example out of doors.

Practical example

Your job is to carry out the survey work for a projected building. You have already calculated a local two-dimensional grid.
It is assumed that the church is directly north of station 1.
From station 1, you will set out and re-mark the boundaries of the property.
Then you will set up the instrument at an unknown point (5) and use "Resection" to determine its coordinates.
Because a foundation pit is already present, you will determine the corners of the building with the help of the program "Reference Line".

- Mark point 1 at any location.
- Set up the instrument.

Entering coordinates

Entering points and coordinates on the theodolite.

Record 2D- and/or 3D points in the data file "FILE02.GSI". Enter all points needed for the example, complete with their coordinates, in this data file.

In any TPS1000 program, point coordinates can be imported from a data file or can be entered manually.

Setting up a station by entering an azimuth

> Sets the station.

Choose the configuration template "Cartesian" to store the coordinates.
Select the measurement file (FILE01.GSI) for storing the measurements.
Select the data file in which you have stored the point coordinates (FILE02.GSI).

Station parameters:

- Station number
- Easting, Northing, Elevation

- Instrument height (hi)
- Orientation: known azimuth (here $\mathrm{Hz}=0$)
(1) Enter the station number and the instrument height directly:

(4) Using ${ }_{\bullet}{ }^{\text {F3 }}$ or ${ }_{\ominus^{\text {CONT }}}$, set the station parameters.
- Start the program "Stakeout" from the main menu.

Select the data file in which you have stored the point coordinates.

Enter the stakeout point.

Starts the search for coordinates in the data file and leads to the coarse setting-out (display "LINE OFFSET").

You can enter the coordinates of the stakeout points manually with ${ }^{\circ}{ }^{F 1}$.

Coarse positioning

This is an aid to positioning. The difference between the required azimuth and the Hz -angle which is read off permits approximate
 positioning in the direction of the setting-out point.

"Line" and "Offset" are not available until the third point has been set out.
(-) Pressing $\sqrt[\underbrace{\text { Shitt }}]{\text { She }}$ (= METHD) presents the option of deactivating the coarse setting-out.

Polar stakeout
$\bigcirc^{\text {F5 }}$

(1) Measures a distance

Repeat procedure until required positioning accuracy is attained.
(4) Mark the point measured.

Set out the points 3 and 2 in the same manner.

To select other setting-out methods and to activate the graphic

Resection

Determining the coordinates of an unknown point (5) and orienting it to two known points by measuring angle and distance.

Known:

Point 2 (E2, N2)
Point 3 (E3, N3) - *
Point 1 (E1, N1) -

Not known:

Point 5 (E5, N5), orientation

* Select two points which, together with the unknown station, form a favourable geometrical constellation (2-3, 2-1).
- Start the program "Resection" from the main menu.

- Enter station number (5) and press

- Enter instrument height and press

- Press \square
- Enter first target point and reflector height, and press ${ }^{\text {CONT }}$
- Target the point and press ${ }^{F 1}$ to measure and record
- Enter second target point and reflector height, and press $\square_{\bullet}^{\text {CONT }}$
- Target the point and press ${ }^{\boldsymbol{F 1}}$ to measure and record

The program calculates the coordinates with an a priori accuracy of 2.5 cm for the known points. To select another level of accuracy, press $\begin{gathered}\text { Shift } \\ { }_{\ominus}\end{gathered} \bullet^{F 2}$ (= CONF) after having started the program. For more information, please refer to the user manual for the programs.
-(The unknown point can also be determined by using the program "Free Station", with the advantage that the station coordinates can be determined by measuring to several tie points, with or without distance.

Where the foundation pit already exists, the points are determined

Known:

Station 5 (E5,N5), orientation, Point 12 (E12,N12), therefore 11, 13, 14

Not known:

Position of point 12, as intersection of the lines 11-12 and 12-13

- Start the program "Reference line" from the main menu.
- First point of baseline is 13 : Press

- Second point of baseline is 12: Press ${ }_{-}^{\text {CONT }}$
- Offset: 0, press \square

- Enter point no. : 12L
- Pressing $\bullet_{\bullet}^{F 2}$ measures a distance
- Repeat these two operations until you have located the extrapolation of the reference line (point 12L) on the sight boards (display shows Δ Offset $=0$).

- ${ }_{\bullet}{ }^{F 3}=$ Record point, hammer nail into sight board
- ${ }^{F 2}$ Repeat procedure for point 13L and tighten string between 12L and 13L.
- ${ }^{F 5}$ Define new reference line $11-12$ for string 11Q-12Q and repeat procedure.
The intersection of the strings $11 Q-12 \mathrm{Q}$ and $12 \mathrm{~L}-13 \mathrm{~L}$ leads to point 12 .

STATION SETUP

Station Coordinate Orientation:

- to Backsight Pt (QSET)
- Hz input (STN)

DATA

> | Search |
| :--- |
| Input |

CONFIGURATION

1	System date and time
2	Define functionality
3	GSI communicat. param.
4	GeoCoM Com. parameter
5	Instrument identificat.
6	Autoexec-application
7	System protection
8	User configuration

DEFINE FUNCTIONALITY
 Show all menus + keys Reduced/full ppm def. Enable user configuration Allow data editing

USER CONFIGURATION

Units
Language
GSI Record format
Record mask
Display mask

Leica

Leica Geosystems AG Geodesy
CH-9435 Heerbrugg (Switzerland)
664955-2.3.0en

Printed in Switzerland - Copyright Leica Geosystems AG, Heerbrugg, Switzerland, 1997
Translation of original text (664955-2.3.0de)

Fax +41 717274673
www.leica.com

