

Topo Software
1 Introduction Dear Customer 1-2
The System Philosophy 1-3
Important Notes 1-4
2 Trimble ${ }^{\circledR}$ 3300DR - the Routine Total Stations
Instrument Description
Hardware Overview 2-2
The Routine Total Stations Trimble 3300DR 2-3
DR Measurement Direct Reflex mode and Laser Pointer 2-4
Program Versions
Overview about software version "Topo" 2-5
Overview about software version"Construct." 2-6
Operation
Overview about software "Topo" 2-7
The Keyboard 2-9
Using the different EDM Modes DR/PR and Laser Pointer 2-10
Direct Reflex Distance Measurement. 2-12
The Basic Concept of the Menu 2-15
Use of this Manual 2-16
Safety Notes
Risks in Use 2-17
Laser Beam Safety 2-20
Laser Beam Safety DR - EDM in Direct Reflex Mode Laser Pointer 2-20
Laser Beam Safety DR - EDM in Prism Mode 2-21
Labelling 2-22 2-22
From Power to Data Overview 2-23

Before Measurement

Set-Up and Coarse Centring 3-2
Levelling and Fine Centring. 3-2
Telescope Focusing 3-4
Switching the Instrument on 3-5
Principles
Principles of Display 3-6
Principles of Input 3-7
Input of Reflector, Trunnion Axis and Station Heights 3-8
Heightstationing: Input of th and ih/Zs 3-9
Measurement "Stationing in Elevation" 3-10
Input of Point Number and Point Code 3-11
Principles of Distance Measurements 3-12
Distance tracking (continuous measurement of the distance) 3-12
Measurements to inaccessible Points 3-13
Presettings
Introduction 3-14
Settings in the Set-Up Menu 3-15
Frequently used Settings 3-18
Rarely used Settings 3-19
Recording the Measurement 3-26
Recording default values (Header) and changed settings 3-27
Measurement in the Start-Up Menu
Selecting the Measuring Mode (presentation of the results at the display) 3-28
Measurement 3-30

4 Coordinates

The Menu Guidance
Principle 4-2
Station Point Memory 4-4
Trimble 3303DR / 3305DR
Special Features of Trimble 3306DR 4-4
Unknown Station
Stationing in Elevation 4-6
Measurement „Unknown Station" 4-7
Recording 4-10
Known Station
Measurement „Known Station" 4-11
Orientation using a known Azimuth 4-12
Orientation using known Coordinates 4-13
Recording 4-14
Stationing in Elevation
Measurement "Stationing in Elevation" 4-15
Recording 4-17
Polar/Detail Points
Confirmation of Stationing 4-18
Measurement „Polar/Detail Points" 4-20
Eccentric Measurement 4-21
Intersection 4-22
DR-Menu 4-25
Recording 4-28
Stake Out
Confirmation of Stationing 4-29
Measurement „Stake Out" 4-31
Stake Out using known nominal Parameters 4-31
Stake Out using known Stake Out Parameters4 4-32
Measurement Results 4-33
Recording 4-34

5 Applications

The Menu Guidance5-2
Connecting Distance
Measurement „Connecting Distance". 5-5
Polygonal Connecting Distance 5-7
Radial Connecting Distance 5-8
Recording 5-9
Object Height + Width
Measurement „Object Height" 5-10
Definition of a Reference Height ZSet 5-11
Measurement beside the Plumb Line 5-12
Recording 5-13
Station + Offset
Measurement „Station + Offset" 5-14
The Station equals Point A $A=S$ 5-18
The Station equals Point $B \quad B=S$ 5-19
The Station equals Point $P \quad P=S$ 5-19
Shifting the Coordinate Axes y, x 5-20
Recording 5-22
Vertical Plane
Measurement „Vertical Plane" 5-23
hSet - Determination of the Height Coordinate 5-24
xSet - Definition of the x-Axis 5-25
ySet - Points in front or behind the Plane. 5-26
The Station equals Point $P \quad P=S$ 5-27
Recording 5-27
Area Calculation
Measurement "Area Calculation" 5-28
Recording 5-31
6 Data Management Editor
Calling the EDIT Menu 6-2
Display of Data Lines 6-2
Searching for Data Lines 6-3
Deleting Data Lines 6-4
Entering Data Lines 6-6
Data Transfer Introduction 6-8
Preparation on the Instrument 6-9
Preparation on the PC - Hyperterminal Settings 6-10
Data Transmission 6-13
Data Reception 6-14
Data Formats
Introduction 6-15
Description of M5 data format 6-16
Additional data lines of M5 data format - Header/changed settings 6-19
Description of Rec 500 data format 6-24
Description of R4 and R5 (M5, Rec 500) format of Trimble 3300DR 6-26
Defination of type identification 6-32
Type identifier-CZ Formats M5, R4, R5, Rec500 '(Trimble 3300DR) 6-32
Description of value blocks 6-35
Trimble/Elta ${ }^{\circledR}$ Format ID and address block 6-36
Data output on a printer 6-37
User Interface Introduction 6-38
What is an interface? 6-38
Hardware interface 6-39
Remote Control Introduction 6-40
Xon/Xoff Control 6-40
Rec 500 Software Dialog (Rec 500 Protocol) 6-40
Key Codes and Function Requests 6-42
Examples for the parameter calls 6-45
Trimble 3300DR controlled from Map500 or TSC1/TSCe. 6-48
Recording Data Lines6-63
Update
Introduction 6-70
Preparation on the Instrument 6-71
Preparation on the PC 6-74
Starting Update 6-76
7 Adjusting and Checking Introduction7-2
V Index / Hz Collimation 7-4
Compensator 7-6
DR EDM System - Laser Beam
The DR EDM System 7-7
Inspection of the Laser Beam Direction 7-7
Adjusting the Laser Beam Direction 7-8
8 Annex Overview Softkeys 8-2
Overview Key Functions 8-6
Geodetic Glossary 8-7
Technical Data
Trimble 3303DR, 3305DR and 3306DR 8-14
Electromagnetic Compatibility (EMV) 8-18
Single Battery Charger 8-19
Charging the Battery 8-21
Formulae and Constants
Computational Formulae for Angle Measurements 8-23
Computational Formulae for Distance Measurements 8-23
Reduction Formulae 8-24
Verifying on Calibration Distances 8-26
Prism and Addition Constants 8-27
Error Messages
Error Message What to do? 8-28
Before you call the service 8-30
Maintenance and Care
Instructions for Maintenance and Care 8-31
Transport Case
Keeping the Measurement System in the Case 8-32
Trimble 3303 /3305 x-treme
Trimble 3303 / 3305 x-treme Extended Temperature Range 8-33

```
The System Philosophy
```

```
The System Philosophy
```

Important Notes 1-4

Dear Customer
By purchasing a Trimble® 3300DR Routine Total Station from Trimble you have opted for a lead-ing-edge product in the field of surveying instruments. We congratulate you on your choice and would like to thank you for the trust placed in our company.

The System Philosophy

For quite some time, surveying has no longer been limited to the measurement of bearings and distances. Complex measurement systems have been in demand that do not only satisfy ever increasing needs for automatization, but also those involving digital data processing as well as the effectiveness of daily measuring practice. New standards have thus been set regarding technology and operating convenience.

The Trimble 3300DR Routine Total Station is part of a complete range of surveying instruments from Trimble. Data interchange between all the instruments is ensured by a common data format.

The operating convenience offered by the Trimble 3300DR hardware is very high within this group of total stations. The clear graphic display and only 7 keys give the user a wide variety of information for the processing in the field and provide him with valuable aids for achieving high productivity in solving his surveying tasks.

The software version "Topo"" meets high standards with the special programs for this application.

[^0]
\& Attention !

Please read the safety notes in chapter 2 carefully before starting up the instrument.

> The instrument was manufactured by tested methods and using environmentally compatible quality materials.

The mechanical, optical and electronic functions of the instrument were carefully checked prior to delivery. Should any defects attributable to faulty material or workmanship occur within the warranty period, they will be repaired as a warranty service.

This warranty does not cover defects caused by operator errors, inexpert handling or inappropriate application.

Any further liabilities, for example for indirect damages, cannot be accepted.

User manual:
Cat. No.:
Date:
Software release: $\quad>$ V 5.61

Subject to alterations by the manufacturer for the purposes of further technical development.

Europe:

Phone: +49-6142-21000
Telefax: +49-6142-2100-220

E-mail:

trimble_support@trimble.com.

Homepage:

www.trimble.com

Tip

The type label and serial number are provided on the left-hand side and under-side of the instrument, respectively. Please note these data and the following information in your user manual. Always indicate this reference in any inquiries addressed to our dealer, agency or service department:
Instrument:
ㅁ Trimble 3303DR
ㅁ Trimble 3305DR

- Trimble 3306DR

Serial number: Software version:

We would like to wish you every success in completing your work with your Trimble 3300DR. If you need any help, we will be glad to be of assistance.

Yours

Trimble Jena GmbH
Carl-Zeiss-Promenade 10
D-07745 Jena
Phone: (03641) 64-3200
Telefax: (03641) 64-3229
E-Mail: support trimble@trimble.com
www.trimble.com

This chapter gives you an overview of the operation and controls of the instrument as well as the programs which are a special feature of the Trimble® 3300DR Routine Total Stations.

Instrument Description

Fig. 1-1: Trimble 3303 DR, Control side

Fig. 1-2: Trimble 3300DR, Objective side

1 Sighting collimator
2 Mark for trunnion axis height
3 Telescope focusing control
4 Vertical clamp
5 Eyepiece
6 Vertical tangent screw
7 Display (graphic capabilities 128×32 pixels)

Interface
Keyboard
Horizontal tangent screw
Horizontal clamp
Tribrach screw
Telescope objective with integrated sun shield

14 Battery cassette lock
15 Vertical axis level
16 Battery
17 Circular level
18 Adjustment screws for optical plummet
19 Optical plummet
20 Tribrach clamping screw

18

The Total Stations Trimble 3303DR, 3305DR and Trimble 3306DR
The electronic Routine Total Stations as instruments of mean accuracy are not only appropriate for land-measuring by geodesists, but also users on building sites appreciate their uncomplicated handling as well as rapidity, reliability and clearness in measuring.
Measurements are made easy thanks to menu guidance supported by graphics, instrument software with flexible point identification and universal data record formats.

The principal features:
Distance measurement
Measuring range

Angle measurement

Error compensation

The advantages in operating

Quick charging, longer times of measuring

Data management
by phase comparison method (PR and DR mode)
up to 100 m Direct reflex up to $5000 \mathrm{~m} / 7500 \mathrm{~m}$ with $1 / 3$ prism(s)

Hz and V electronically all common units and angle reference systems

Automatic compensation of sighting axis and index errors

Display screen with graphic capabilities (128×32 pixels), user-friendly surface, easy familiarisation, simple handling,
reliable control of all measuring and computing processes with clear references, integrated, practical application programs, ergonomic arrangement of controls, light, compact construction

Eco-friendly power supply for about 1000 angle and distance measurements, charging time 2 hours

RS 232 C (V 24) interface as data input and output

Internal data memory of Trimble 3303DR and Trimble 3305DR can record 1900 data lines.

DR Measurement

Direct Reflex Mode and Laser Pointer

In addition to the well known prism mode (PR) the instrument is equipped with:

- Direct Reflex Mode (DR) and Laser Pointer

The Laser pointer can be used to support aiming on any surface in- and outdoor and to search prisms at distances greater than 1000 meters.
\& Attention!
Do not use the laser pointer function below 1000 m on prisms and high reflecting surfaces.

DR - Mode measurement without prism

PR - Mode (Standard) measurement with prism

This program is available on the delivered instrument.

Overview about software version „Topo"
(version > 5.00)

Coordinate programs

Stationing in elevation

Polar / Detail Points (with eccentricity - new)

Stake Out

Application programs

Connecting Distances (with heightstationing - new)

Object Height + Width

> Station + Offset
> (with heightstationing - new)

Vertical Plane

Area Calculation (new)

This program version can be selected.

Overwiev about software version „Construction"
(version > 4.00)

Overview about software "Topo"

Menu (ON+MENU)

Input

1
2
2
3
4

4 Pemp (temperature)

Applications
1 ___ Connecting distance
 Object height
3 __ Station + Offset
4 Vertical plane
5 \qquad Area Calculation
Coordinates
 Unknown Station Known Station
3 Stationing in elevation
4 __ Polar/Detail Points
5 _ Stake out
Setting Instrument

1	Angle (resolution)
2	Distance (resolution)
3	V-Refer
4	Coord.System
5	Coord.Display
6	Temperature
7	Pressure
8	Turn off
9	Sound
10	Angle (Units)
11	Distance (Units)
12	Display Illumination
13	Contrast
Dset	
1	DR-Menue
2	Longe Range
3	Laser Pointer OFF
4	EDM-Time-out

The Keyboard

Two types of keys:

- Hardkeys
- direct function

ON and MEAS

- Key in connection with ON (SHIFT)
- Softkey function depending on program, significance explained in display line at the bottom

ON

MEAS
ON OFF

$O N$	$D R$
$O N$	EDIT
$O N$	PNO
$O N$	MENU
$O N$	粦

(1) Overview softkeys Annex

For operating the Trimble 3300DR, only 7 keys are needed.

Key Functions (Hardkeys)

Switching the instrument on and changing over to hardkey function

Starting a single measurement or Tracking mode
Switching the instrument off
Switch between PR and DR measure mode
Calling up the memory
Calling up the input of point number and code
Going to the main menu
Switch Laser pointer ON / OFF

Softkeys

Function keys defined by the display in dependence on the program.

Using the different EDM Modes DR / PR and Laser Pointer

Direct Reflex Mode

Measuring Range

Prism Mode

Direct Reflex Mode - DR
When measuring without prisms or any other reflectors. The reflector height is set to Zero (default). If needed this values can be changed in the Menu "INPUT". The prism constant is set to zero to.

Direct Reflex Mode ON

70 m to Kodak Gray Card- 18\% reflection 100 m to Kodak Gray Card- 90\% reflection (depending on the object surface and light conditions.

Prism Mode - PR

When measuring to prisms or other reflectors like foil. The prism constant and reflector height can be changed in the Menu.

Prism mode ON

1,5 ... 3000 m (for 1 prism, Standard range - SR)
1,5 ... 5000 m (for 3 prisms, SR)
$2,5 \ldots 250 \mathrm{~m}$ (for foil reflector $60 \times 60 \mathrm{~mm}^{2}, S R$)

Using the different EDM Modes DR / PR and Laser Pointer

Long Range Mode

Long Range Mode (LR) (DR mode to prisms)
When measuring to prisms or other reflectors at long distances or bad weather conditions. The prism constant and reflector height can be changed in the Menu."INPUT"

Long Range Mode ON

Measuring Range:

1000	5000 m (for 1 prism, LR)
1000	7500 m (for 3 prisms, LR)
2,5	800 m (for foil reflector $60 \times 60 \mathrm{~mm}^{2}, L R$)

Note
Prisms should be measured in Prism Mode. In this mode the EDM is not so sensitive to disturbing influences and has the highest accuracy.
\& Attention!
Do not use Direct Reflex Mode on prisms or high reflective surfaces for distances below 1000 m . In that case the prism constant is not taken into consideration.
Error message 042 could appear:

1. doing measurements in DR mode to prisms at distances longer than 300 m or distances shorter 1,5m
2. doing measurements in DR mode to non cooperative targets at distances close to the maximum working range in that mode.

Laser Pointer

米 When aiming to targets or searching targets．

二 S匚				
$\div \mathrm{Hz}$	12		$5 \cdot \mathrm{r}$	
－J J	1 百 2	回	百stid	
HzW	Hz＝	W	INT気	$\div \underline{z}$

Laser Pointer ON

Direct Reflex Distance Measurement

［1］
Appendix
Technical Data

EDM Modes：

The values given in the technical data concerning accuracy，range and measurement time depend on the following effects：
－Atmospheric influences（sight conditions， rain，wavering heat）
－Radiation of the sun at the target
－Disruption of the beam by moving objects
To ensure a maximum result in distance measurement a time out（of the measuring time） has been set to max． 30 sec ．This guarantees that even at bad conditions greater distances can measured．However a measurement takes about 2 seconds．

Tip

If there are unfavourable sighting distances or measuring conditions，you should await the time－out of the measurement．Every measurement taken within that time matches the accuracy＇s guaranteed for this mode of measurement．

The range of unambiguity of an indicated measurement covers up to 9 km using prism mode as well as direct reflex mode．

When measuring in direct reflex mode the following measuring area at the target is significant for a measured distance of 50 meters.
DR Mode PR mode

50m
150m

When aiming at a target at a distance of approx. 150 m the signal range is approx. 0.13 grad in V resp. 0,09 grad in Hz - direction. This allows an aiming range of approx. 300 mm in V resp 210 mm in Hz to grant a secure distance measurement. To make sure that there is always enough signal no distance measurement should be taken out of this range.

\& Attention!

When using direct reflex mode avoid any interruptions of the beam. If the beam is interrupted while measuring (e.g. shortly by moving objects) the measured distance has to be checked by remeasuring.

Tip
To separately measure angle and distance or indirectly determine points use programs "Eccentricity / Intersection".

When measuring greater distances the accuracy of the distance measurement depends on the correction of the atmospheric influences such as temperature pressure and humidity. In order to restrict the atmospheric correction to exactly $1 \mathrm{ppm}(\mathrm{mm} / \mathrm{km})$ temperature has to be determined up to $1^{\circ} \mathrm{C}$, pressure up to 4 hPa and humidity up to 20% along the measuring section. The correction formulas are given in the appendix.
[1] Formulas and constants

Tip
Using direct reflex mode be aware of a minimum distance of 1.5 m . If there are unfavourable conditions you cannot fall short of this minimum distance.

The total station is able to realise a great variety of functions.

Functions needed directly during the measuring process are accessible through the key functions.

ON MENU
The menu facilitates the access to many other functions.

Having selected the menu, you can go to submenus and you are offered available functions, respectively:
e.g. settings

e.g. measurement programs

†' 1	IrIFldt.	
F		
+		
툳	† +	YES

Use of this Manual

Chapter

Section
Subsection

Functional text for
calling up programs:

4 Coordinates
3 Stationing in elevation

Mode Softkeys and their functions
[1] Cross references to other chapters

Small graphics

The manual is divided into 8 main chapters.
The subchapters have not been numbered. Clarity and convenience are provided by a maximum of 3 structural levels, for example:

4 Coordinates

2 Coordinates Unknown Station
Recording

The pages are divided into two columns:
Principal text including

- Description of measuring processes and methods
- instrument operation and keys
-Trimble 3300DR display / graphics
- drawings and large graphics
- tips, warnings and technical information

> Tip
for hints, special aspects and tricks
\& Attention!
for risks or potential problems
\& Technical Information
for technical background information

Measuring tasks are defined as follows:
given: : given values
meas.: : measured values
requ.: : required/computed values
You will find a list of terms in the annex (Geodetic Glossary).

Risks in Use

Instruments and original accessories from the manufacturer have to be used only for the intended purpose. Read the manual carefully before the first use and keep it with the instrument so that it will be ready to hand at any time. Be sure to comply with the safety notes.

\& Attention!

- Don't make any changes or repairs on the instrument and accessories. This is allowed only to the manufacturer or to specialist staff authorised by the same.
- Do not point the telescope directly at the sun.
- Make sure to strictly observe the following instructions regarding the use of the laser devices.
- Do not use the instrument and accessories in rooms with danger of explosion.
- Use the instrument only within the operative ranges and conditions defined in the chapter of technical data.
- Do not operate the battery charger in humid or wet conditions (risk of electrical shock). Make sure the voltage setting is identical on the battery charger and voltage source. Do not use instruments while they are wet.
- Only the service team or authorised specialist staff are allowed to open the instrument and accessories.

Risks in Use (cont.)

\& Attention!

- Take the necessary precautions at your measuring site in the field, note the relevant traffic rules.
- Check that the instrument has been correctly set up and the accessories are properly secured.
- Limit the time of working when it is raining, cover the instrument with the protective hood during breaks.
- After taking the instrument out of the case, fix it immediately to the tripod with the retaining screw. Do never leave it unfastened on the tripod plate. After loosening the retaining screw again, put the instrument immediately back into the case.
- Prior to starting operation, allow sufficient time for the instrument to adjust to the ambient temperature.
- Tread the tripod legs sufficiently down in the ground in order to keep the instrument in stable position and to avoid its turning over in case of wind pressure.
- Check your instrument at regular intervals in order to avoid faulty measurements, especially after it has been subjected to shock or heavy punishment.
- Remove the battery in case of being discharged or for a longer stop period of the instrument. Recharge the batteries with the charger recommended by the manufacturer.

Risks in use (cont.)

e Attention !

- Properly dispose of the batteries and equipment taking into account the applicable national regulations.
-The main cable and plugs of accessories have to be in perfect condition.
- When working with the prism rod near to electrical installations (for example electric railways, aerial lines, transmitting stations and others), there is acute danger to life, independent of the rod material. Inform in these cases the relevant and authorised security offices and follow their instructions. Keep sufficient distance to the electrical installations.
- Avoid surveying during thunderstorms because of lightning danger.

\& Attention !

It is forbidden to use an instrument with optical plummet in combination with a laser tribrach for zenith sighting.

Laser Beam Safety

If used for the intended purpose, and if correctly operated and properly maintained, the lasers provided in the instruments are not hazardous to the eye.

Laser Beam Safety

\& Attention

Repairs must only be performed at a service workshop authorised by Trimble.

DR - EDM in Direct Reflex Mode Laser pointer

The EDM in Direct Reflex Mode and in Laser pointer mode produces visible Laser light emerging at the center of the telescope objective.

CLASS 2 LASER PRODUCT

This product complies with IEC 60 825-1: January 2001 and 21 CFR 1040.10 and 1040.11 except for deviations persuant to Laser Notice no 50, dated July 26, 2001

- Beam divergence: 0,4 mrad
- Modulation frequency:
- Max. output power:
- Carrier wavelength:
- Measuring uncertainty:
*) not valid for Laser pointer

$\&$ Attention !
Direct viewing into the beam (also with binoculars) must be avoided under all circumstances!
AVOID EXPOSURE -
Laser radiation is emitted from this aperture.
Protection is normally afforded by aversion responses including the blink reflex.
Do not use direct reflex mode on prism or high reflective surfaces for distances below 1000 m.

Emergency switches:

Laser Beam Safety
The EDM in Prism Mode produces visible Laser light emerging at the center of the telescope objective.
Conforms in this mode to CLASS 1 in acc. with IEC 60 825-1: January 2001
This product complies with IEC 60 825-1: January 2001 and 21 CFR 1040.10 and 1040.11 except for deviations persuant to Laser Notice no 50, dated July 26, 2001

DR - EDM in Prism Mode

- Beam divergence: $\quad 0,4 \mathrm{mrad}$
- Modulation frequency:

300 MHz

- Max. output power:
$17 \mu \mathrm{~W}$
- Wavelength:

660 nm

- Measuring uncertainty:

$$
\pm 5 \%
$$

CLASS 1 LASER

Labelling

The laser beam safety labels are located at the side and front of the telescope objective. The instrument label is located at bottom of the instrument.

LASER RADIATION DO NOT STARE INTO BEAM CLASS 2 LASER PRODUCT

Wavelength: 630-680 nm, Maximum output power: 1 mW
This product complies with IEC 60825-1, January 2001 and 21 CFR 1040.10 and 1040.11 except for deviations persuant to Laser Notice no. 50, dated July 26, 2001

Laser beam safety label

Instrument label

The First Steps cover up the set-up of the instrument, including the explanation of basic inputs and the necessary presettings.
After having set the parameters for saving and entered the point information, you can measure in the start-up menu.

```
Before Measurement
Principles 3-6
Presettings 3-14

\section*{Set-Up and Coarse Centring}


In order to guarantee the stability of measurement we recommend the use of a havy tripod.
Set-up:
Extend the tripod legs (1) to a comfortable height of observation and fix them using the tripod locking screws (2). Screw the instrument centrally to the tripod head plate (3). The tribrach screws (4) should be in mid-position.

Coarse Centring:
Set up the tripod roughly above the station point (ground mark), the tripod head plate (3) should be approximately horizontal.

Centre the circular mark of the optical plummet (5) above the ground mark using the tribrach screws.
To focus the circle: Turn the eyepiece.
To focus the ground mark: Draw out or push in the eyepiece of the optical plummet.

\section*{Levelling and Fine Centring}


\footnotetext{
00000
}

Coarse Levelling:
Level the circular bubble (6) by adjusting the length of the tripod legs (1).

Precision Levelling:
Align the control unit parallel with the imaginary connecting line between two tribrach screws. Level the instrument by turning the tribrach screws a) and b) in opposite directions. Turn the instrument by 100 grad in Hz and level instrument with tribrach screw c).For checking, turn the instrument round the vertical axis.

After that, check the residual inclination by turning the instrument in both diametric positions of (1) and (2). Take the mean of deviation from centre point of level and adjust, if necessary.

\section*{Precision Centring}

Shift the tribrach on the tripod head plate until the image of the ground mark is in the centre of the circular mark of the optical plummet; repeat the levelling various times if necessary.

\section*{\& Attention!}

It is forbidden to use an instrument with optical plummet in combination with a Laser tribrach for zenith sighting.

Focusing the Crosslines:
Sight a bright, evenly coloured surface and turn the telescope eyepiece until the line pattern is sharply defined.

\section*{\(\&\) Attention!}

Sighting of the sun or strong light sources must by all means be avoided. This may cause irreparable damage to your eyes.

Focusing the target point:
Turn the telescope focusing control until the target point is sharply defined.

\section*{Tip}

Check the telescope parallax: If you move your head slightly whilst looking through the eyepiece, there must be no relative movement between the crosslines and the target; otherwise, refocus the crosslines as above.

\section*{Switching the Instrument on}

ON Press key

Switching the instrument off by pressing the keys

Additionally to the company logo, the number of the software version (important for future updates) and the values last set for:
- prism constant
- scale
- temperature
- air pressure
are displayed briefly.

\section*{Tip}

The compensator is automatically activated when the instrument is switched on.
If levelling of the instrument is insufficient, the digits after the decimal point in the displayed angle readings are replaced by dashes.
simultaneously.

The information
－point code，
－point number and
－measured／computed values
is displayed on two pages．
Toggling between the pages：
to page 1
\(\rightarrow 2\) to page 2

Display page 2 ：
MEM／3


Display page 1 ：
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 2 Sㅁ & \multicolumn{3}{|r|}{3． 721 m} & & & \\
\hline \(\ddagger \mathrm{HI}\) & & 22 & Dird & & & \\
\hline ぐ」 & 85 & B8 & Diprd & & & \\
\hline HFW & F＝可 & WF & INT3 & & & ＋ \\
\hline
\end{tabular}

Tip
The fields at the bottom of the display are related to the functions of the keys situated below the display．
They indicate the next possible settings－do not mix it up with the current setting．

Additionally to the setting of predefinitions - as described further down in this chapter - you will have to enter data continually during the measuring process.

\section*{These entries are}
- the constantly changing instrument, station and reflector heights and
- coordinates of stations or other known backsight points.
[D] Editor
Data Management

The manual input of coordinates is described in Chapter 6 Data Management.
[1] Data Transfer
Data Management
If available, it is useful to transfer the values directly from a PC instead of entering them manually.

\section*{Input of Reflector, Trunnion Axis and Station Heights}

The input of the values of reflector height (th), instrument height (ih) and station height (Zs) (heightstationing) allows you to measure with absolute heights already in the initial menu. If these values have not been entered, only relative height differences will appear in the display (memory). If \(\mathrm{Zs}=0\) the height difference " \(h\) " is displayed and recorded, otherwise the height " \(Z\) ".

\section*{th/ih}
in measuring modes HD and yxh only

Presettings First Steps

on display page 1 only:


Z heightstationing
th to enter the reflector height
to enter the instrument and station height

\section*{Heightstationing: Input of th and ih/Zs}

Input of the reflector height:


Set reflector height via input


The current position for input is inverse displayed.
th 2.000 m actual refl. hight
th-old 0.100
last refl. hight
th \(=0\)
set to zero
input
to enter a value
\(\leftarrow\) and
\(\rightarrow\) to go to the desired position in the display
- to browse through the digits
to confirm

\section*{\& Attention!}

Default Settings in DR mode:
th \(=0.000 \mathrm{~m}\)
Prism constant \(=0.000 \mathrm{~m}\)

Input of the instrument height / station height


\section*{L_D Editor} Data Management

L to enter values (compare input of th)

ESC to quit the input routine

Measurement ,,Stationing in Elevation"

Stat to go to the input menus

\section*{CHCK \\ \(\square\)}

Adjusting and checking

ESC
to quit the program

L LD Principles
First Steps
DD) Editor
Data Management
\(\rightarrow \quad\) sight to the backsight point
\(\mathrm{ON}+\mathrm{PNO}\)
enter or change of the point number

MEAS

YES
to accept the result, to record data, to quit the program

NO to terminate the program, new start


Input one after the other:
\(Z\), ih, th:


Measurement to the backsight point


Result and Recording

\section*{Input of Point Number and Point Code}


\section*{Principles of Distance Measurements}

Single measurement
MEAS start measurement in DR mode

Indicates the measurement in progress.


The distance measurement can be cancelled with the softkey ESC.

The slope distances and derived values are corrected with regard to the influences of earth curvature / refraction. Additionally, a correction of atmospheric influences (temperature and pressure) is applied.

The correction is zero with \(\mathrm{T}=20^{\circ} \mathrm{C}\) and \(\mathrm{P}=944 \mathrm{hPa}\).

\section*{Distance tracking (continuous measurement of the distance)}


Tip
Please use this function in the start-up menu only.
In the program "Polar/Detail Points" it is possible to measure with the program "Eccentric Measurement".

The prism used for the distance measurement cannot be stationed on the desired point \(P\).


Sight towards the point \(P\) and trigger the measurement. Then aim to the prism stationed on the auxiliary point H .
Pay attention to the condition of equidistance \(\mathrm{S}-\mathrm{P}=\mathrm{S}-\mathrm{H}\).

If data recording is activated, only a data line indicating the angle to P and the distance to H is recorded.
But after the measurement the angle and distance to H are displayed, since the angle value is continuously updated in the Trimble 3300DR display.

The required presettings are to be subdivided into three groups:

\section*{Settings in the Start-up Menu}
- Specify measuring units for angle and distance Short-time setting of V angle in percent
- Toggle between PR and DR mode
- Laser pointer ON / OFF
- Activating and deactivating the compensator
- Orientation of Hz circle
- Activating program "Intersection" (INT)

\section*{Frequently used Settings}
- Input of pressure and temperature
- Input of scale and prism constant
- DR menu ON

\section*{Rarely used Set Instructions}
- Display mode for angle and distance
- Vertical reference system
- System of coordinates
- Display of coordinates
- Measuring units of temperature, pressure
- Switching the instrument automatically off
- Switching the acoustic signal on and off
- Regulation of display contrast and brightness of crossline illumination
- Switching the distance measurement off automatically if sighting line interruption
- Long range (LR)

\section*{Settings in the Set-Up Menu}

Setting the unit of distance measurement

Setting of the units for angle and distance measurement can be done in the menu "Setting Instrument". Setting the units for distances can also be done in the measurement menu.

Display page 2


\section*{\& Attention!}

If the mode is changed after the measurement, the reading will be converted and displayed in the new mode immediately. But results of the measurement in the new mode are recorded after the next measurement.

Display page 1

\section*{V\% \\ and}
\(\mathbf{V} \boldsymbol{E}\) 』 to toggle quick between angle in percent / defined measuring unit


\section*{Activating and} deactivating the compensator

\section*{CHCK}
to go to the menu

\section*{and}

\section*{Comp \\ [1]}

Adjustment and checking

C-on to deactivate the compensator function

C-off
to activate the compensator function

\section*{Display compensator menu:}


If recording is activated, an information line will be stored indicating compensator function ON or OFF.

\section*{\& Attention!}

If the compensator is out of its working range and the function is activated, the digits after the decimal point in the angle readings are replaced by dashes. In this case, the instrument is not sufficiently levelled and a remote release from a PC is not admitted.

\section*{Orientation of Hz circle}

Aim: \(\mathrm{Hz}=0\)

\section*{\(\mathrm{Hz}=0\)}

Sight to target


MEAS

Aim: \(\mathrm{Hz}=\mathrm{xxx}, \mathrm{xxx}\)

\section*{HOLD}

Turn the instrument to the
 desired Hz circle value

\section*{MEAS}

Sight to target
MEAS

Display page 2
Aim: Change Hz count direction

\section*{\(\rightarrow \mathrm{Hz}\) Measurement clockwise}

\section*{\(<\mathrm{Hz}\) Measurement} counterclockwise

d Attention!
Setting of the Hz count direction is only possible in the start-up menu.
The Hz count direction is always recorded to clockwise.
After switch ON the instrument and in all selectable programs the default setting of the Hz count direction is always to clockwise.

Frequently used Settings
\(\mathrm{ON}+\mathrm{MENU}\)

1 Input
\(\uparrow\) and
\(\downarrow \quad\) to go to the desired menu point
o．k．to confirm
\(+\quad\) and
to alter the prism constant（scale， temperature and pressure）step by step
o．k．to confirm

Alteration of pressure，temperature，scale and prism constant
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & Fr i Em & & \multicolumn{2}{|l|}{II．IIIIIII} \\
\hline \[
+\frac{2}{3}
\] & Sに日に TEmF． & & \[
\frac{\square}{20}
\] & \\
\hline E－E & † & ＋ & & YEP \\
\hline
\end{tabular}


（7）Tip
After switch ON the instrument only temperature and pressure have to be entered．
If a prism with a constant different from -35 mm is used the new prism constant also has to be entered．
［1］Formula and constants Annex

Possible ranges：
\begin{tabular}{lll}
\(-30^{\circ} \mathrm{C}\) & \(<\) Temp． & \(<70^{\circ} \mathrm{C}\) \\
-162 mm & \(<\) Prism． & \(<92 \mathrm{~mm}\) \\
0,995000 & \(<\) Scale \(\Delta 1^{\circ} \mathrm{C}\) \\
440 hPa & \(<1,005000\) & with \(\Delta 1 \mathrm{~mm}\) \\
Press． & \(<1460 \mathrm{hPa}\) & with \(\Delta 1 \mathrm{ppm}\) \\
with \(\Delta 4 \mathrm{hPa}\)
\end{tabular}

Rarely used Settings
\[
\mathrm{ON}+\text { MENU }
\]

4 Setting Instrument

\section*{YES} to activate menu

\section*{\(\uparrow\) and}
to select the submenu

MOD to change setting
ESC
to quit submenu
\(\uparrow\) and
\(\downarrow\) to quit setting / to confirm change

Select the main menu.


Angle and distance display


Possible settings:
\begin{tabular}{ll}
\begin{tabular}{ll} 
Angle \\
grad
\end{tabular} & \(0,005-0,001-0,0005\) \\
grad & \(0,005-0,001-0,0002\) \\
DMS & \(10^{\prime \prime}-5^{\prime \prime}-1^{\prime \prime}\) \\
deg & \(0,005^{\circ}-0,001^{\circ}-0,00\) \\
mil & \\
Distance \\
m & \(0,01-0,005-0,001\) \\
ft & \(0,02-0,01-0,001\)
\end{tabular}
\& Attention!
The selected settings of angle and distance accuracy are only related to the display.
Measurements are always recorded with the highest possible precision.

\section*{Vertical reference system}

MOD to change setting
ESC to quit menu
\(\uparrow\)
and
\(\downarrow\) to quit setting / to confirm change


V reference systems:

VE|Zenith angle


1: Zenith angle
unit 400 grads

VスN Height angle

\(-1600^{\text {mil }}\)

Examples
3: Height angle unit 6400 mil

\section*{Tip}

The setting of the measuring unit \% is done in the set-up menu!
\begin{tabular}{c|l}
\hline MOD & to change setting \\
\hline ESC & to quit menu \\
\hline \(\boldsymbol{T}\) & and \\
\hline \(\boldsymbol{y}\) & to quit setting / to \\
confirm change
\end{tabular}
\begin{tabular}{|c|l}
\hline MOD & to change setting \\
\hline ESC & to quit menu \\
\hline \(\boldsymbol{\uparrow}\) & and \\
\hline \(\boldsymbol{\Psi}\) & to quit setting / \\
confirm change
\end{tabular}

System of coordinates / display order


\section*{Assignment of axes of system of coordinates:}


Indication sequence: \(\mathrm{Y}-\mathrm{X} / \mathrm{X}-\mathrm{Y} \quad \mathrm{E}-\mathrm{N} / \mathrm{N}-\mathrm{E}\)
\& Attention!
When the assignment of coordinates is changed, the question for further use of the internal station coordinates appears in the display, calling the user's attention to a possible source of errors.

Measuring units for temperature / pressure
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|r|}{} & 4 C \\
\hline + 7 & Fr' & - & FP: \\
\hline 8 & Tır & I & IFF \\
\hline EEIC & + & 4 & HDC \\
\hline
\end{tabular}

Possible settings:
\begin{tabular}{lll} 
Temperature & \begin{tabular}{l}
\({ }^{\circ} \mathrm{C}\)
\end{tabular} & \begin{tabular}{l} 
degrees Centigrade \\
degrees Fahrenheit
\end{tabular} \\
Pressure & \({ }^{\circ} \mathrm{F}\) & hectopascal (or millibar) \\
& \begin{tabular}{l} 
hPa \\
Torr \\
inHg
\end{tabular} & \\
& inch mercury
\end{tabular}
\begin{tabular}{|c|l}
\hline MOD & to change setting \\
\hline ESC & to quit menu \\
\hline \(\boldsymbol{\sim}\) & and \\
\hline \(\boldsymbol{\psi}\) & to quit setting / \\
confirm change
\end{tabular}

MOD to change settings
ESC to quit the menu
\(\uparrow\) and
\(\downarrow\) to quit settings / to confirm alterations

MOD to change settings
ESC to quit the menu
and
\(\downarrow\) to quit settings / to confirm alterations

Acoustic signal


Possible settings:
Sound ON- OFF

Settings of units for angles.


Possible settings:
Angles
\begin{tabular}{ll} 
Grad & 400.0000 \\
DMS & \(360^{\circ} 00^{\prime} 00^{\prime \prime}\) \\
deg & \(360.0000^{\circ}\) \\
mil & 6400 mils
\end{tabular}

Settings of units for distances


Possible settings:
\begin{tabular}{lll} 
Distances & m & Meters \\
& ft & Feet
\end{tabular}

> Tip

It is possible to change the units between meters and feet in the start up menu.
\begin{tabular}{|c|l}
\hline MOD & to change settings \\
\hline ESC & to quit the menu \\
\hline \(\boldsymbol{A}\) & and \\
\hline \(\mathbf{~}\) & to quit settings／to \\
confirm alterations
\end{tabular}

Display illumination／Reticle illumination
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{array}{r}
10 \\
+\quad 11 \\
\hline
\end{array}
\] & \multicolumn{3}{|l|}{Arヨا． ロist．ゴルに} &  \\
\hline 12 & \(\square \mathrm{I}\) & I & IIIII． & DFF \\
\hline ESEI & † & 4 & & HDE1 \\
\hline
\end{tabular}

Possible settings：
Disp．Illum．：
```

ON－OFF

```
Tip

Both illuminations are switched on at the same time．The adjustment of the reticle illumination is only possible with the display illumination switched ON．

Displaycontrast／Reticle illumination variation
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{array}{r}
11 \\
+\quad 12 \\
\hline
\end{array}
\] & \multicolumn{3}{|l|}{ロ i ミがヨドロー DisF．I I．I． 1 m．} & \[
\mathrm{m}_{\mathrm{B}}^{\mathrm{m}}
\] \\
\hline 13 & Cib & H & I． 1 DII &  \\
\hline ESE & † & 4 & & HED \\
\hline
\end{tabular}

Possible settings：
Contr／Illum： 8 steps
（Tip
The adjustment of the display contrast is only possible with the display illumination switched to OFF．The adjustment of the reticle illumination is only possible with the display illumination switched ON．To switch ON the reticle illumination please switch ON the display illumination to
\(\mathrm{ON}+\mathrm{MENU}\)
5 Dset

YES
to activate menu
\(\uparrow\) and
\(\downarrow \quad\) to select the submenu

MOD to activate menu
ESC to quit submenu
and
to quit setting／to confirm change

Select the main menu．
Setting modes and parameters related to the EDM／distance measurement．
\begin{tabular}{|c|c|c|c|c|}
\hline \(\dagger 4\) & ， & & \multicolumn{2}{|l|}{Irıstr} \\
\hline 5 & \multicolumn{4}{|l|}{디플．} \\
\hline \(\downarrow\)＋ & t． & & Irter & ¢ヨご \\
\hline ESE & † & 4 & & Y2E \\
\hline
\end{tabular}

\section*{DR mode（Support programs for DR mode）}


Possible modes：Standard－＞Start
Bearing－＞Distance
TRK－＞Start

\section*{Tip}

The modes of the menu appear after pressing the button MEAS ！

Long Range（measure long distances）．
\begin{tabular}{|c|c|c|c|c|}
\hline † \(\dagger\) & \multicolumn{3}{|l|}{［1F－\({ }^{\text {del }}\)} & 10 \\
\hline F & \multicolumn{3}{|l|}{LDrig rarige} & 1 T \\
\hline ＋3 & F & & & 1 O \\
\hline E®ロ & † & ＋ & & H0］ \\
\hline
\end{tabular}

Maximum ranges：

800 m for foil reflector （ \(60 \times 60 \mathrm{~mm}^{2}\) ）
5000m for 1 prism
7500 m for 3 prisms

\section*{Laser Pointer OFF}
\begin{tabular}{|c|c}
\hline MOD & to activate menu \\
\hline ESC & to quit submenu \\
\hline \(\boldsymbol{T}\) & and \\
\hline \(\boldsymbol{\psi}\) & to quit setting / to
\end{tabular}
\begin{tabular}{|c|l}
\hline YES & to activate menu \\
\hline ESC & to quit submenu \\
\hline \(\boldsymbol{T}\) & and \\
\hline \(\boldsymbol{\psi}\) & \begin{tabular}{l} 
to quit setting / to \\
confirm change
\end{tabular} \\
\hline
\end{tabular}


Possible settings:
No - Laser pointer always ON.
1x - Laser pointer OFF after measurement or after 2 minutes without measurement.
Tip

This setting controls the time to switch the laser pointer OFF automatically.

Time out distance measurement


Possible settings:
OFF - No Time out EDM
10sec. - Time out after 10 seconds
30sec. - Time out after 30 seconds

\section*{(Tip}

This setting controls the time out of the distance meter while the distance measurement is interrupted.

Recording the Measurement
\(\mathrm{ON}+\) MENU

\section*{6 Setting Interface}

YES to enter the menu

MOD to toggle between MEM/1, MEM/2, MEM/3
V24/1, V24/2,
V24/3
OFF
ESC to return to the higher-order menu
[D] Record data lines Data Management


MEM/x - internal saving (only Trimble 3303DR and Trimble 3305DR)

V24/x - external recording via RS232 interface
Off - no recording
1 - recording of measured values
2 - recording of computed values
3-1 and 2 together

\section*{\& Attention!}

These settings are valid in the programs "Coordinates" and „Applications".
All results in the Start-up menu are interpreted as measured values (1).
Tip

The detailed depiction about the relationship of measured dta, recorded type of identifiers and selected recording are described in the chapter Data Management.
(1)d Presettings

First Steps
\& Attention!
Depending on the selection of type of recording and type of measuring mode the type of displayed results and the type of recorded values is given.

Recording default values (Header) and changed settings
\(\mathrm{ON}+\mathrm{MENU}\)

\section*{6 Setting Interface}

YES to enter the menu
\(\uparrow\) and
\(\downarrow\) to quit setting / to confirm change

ESC to return to the' higher-order menu
MOD
to toggle YES/NO
ESC to quit submenu

\section*{\(\uparrow\) \\ and}
\(\downarrow\)
to quit setting / to confirm change
(D) Record data lines

Data Management

Select main menu



Possible settings:
YES - Record settings
NO - Don't record settings
Tip

The detailed depiction about the relationship of measured data, recorded type of identifiers and selected recording are described in the chapter Data Management
to activate
NO to deactivate

Record current settings?

\(\&\) Attention !
To start recording switch OFF and ON again the instrument!

\section*{Selecting the Measuring Mode (presentation of the results at the display)}

F1 to set the following measuring modes

Display page 1 :
Tip

At the display of softkey 1 , always the next selectable measuring mode appears.

SD: Display of the original measurement


HzV : Display in the theodolite mode
Can be used for alignments and for setting out right angles but
not for distance measurements.


Display of the calculated values
with \(Z=0\)
with \(Z \neq 0\)

Measurement in the local system with station \(\mathrm{y}=\mathrm{x}=0\) with \(Z=0\)
\(\mathrm{HD}, \mathrm{Hz}, \mathrm{h}\) : Display of the reduced distance and the height difference


\(y, x, h\) : Display of the local rectangular coordinates


(Tip
The measuring modes can be changed at any time. The results will be displayed immediately in the selected measuring mode but these results are not recorded at the same time. All following measurements are displayed and recorded in the newly selected mode.

In all measuring modes, the angle reading is updated continually.
The measured distances or coordinates are updated only after the next measurement.

After entering and defining all required parameters the measurement can be started.



Measurements in the modes

SD and HzV are done without entering and recording local or global heights

Tip
After the measurement, the flush right point number is incremented by one within the number of digits displayed up to the special characters (no figure) to the left of it.
(According to this picture, counting goes only up to 9 , then it will begin again with "0".)


Display with absolute heights, with the heights Zs , ih and th entered.

The basic requirement for a measurement in a system of coordinates is a stationing within this system before. That means the position and height of the instrument are determined by measuring to known backsight points. In the case of an unknown station, the scale and the orientation of the Hz circle in azimuth direction are computed additionally to the station coordinates. In the case of a known station, only the scale and the orientation of the Hz circle in azimuth direction are computed.

After the stationing, the actual measurements that means Polar/Detail points and Stake out can be done within this system of coordinates.
The Menu Guidance 4-2

Unknown Station 4-6
Known Station 4-11

Stationing in Elevation

The guidance through the menu is very easy to understand and based on a unique schema for all programs.

\section*{Principle}

\section*{Coordinates}

Unknown station

\section*{CHCK \\  \\ Adjusting and Checking}

A to call point A

DD) Principles First steps
(LD) Editor
Data management

Each program flow is demonstrated by a graphics.
\(A\) and \(B\) are backsight points with known coordinates and \(S\) is the station the coordinates of which are to be calculated.


Tip
The function of adjusting and checking is required for measurements to be carried out without/with compensator or for checking the adjustment of the instrument.

Coordinates are to be entered


B
to continue by calling point \(B\)

ESC
to return to the higher-order menu

A to repeat point \(A\) if required
\(\mathrm{ON}+\mathrm{PNO}\)
to enter point number and code

MEAS to trigger measurement

In the Stake out program, the possibility to measure is indicated additionally by the 바보쿄 symbol in the display


If A has been calculated, measured, defined as station, the symbol for \(A\) is filled.

\section*{\& Attention!}

If errors or confusions should occur whilst measuring to the points, the measurement to single points can be repeated immediately.

\section*{Tip}

Prior to each measurement with MEAS it is possible to enter a point number and a code for the point to be measured.
In the stationing programs, the codes ( \(\mathrm{A}, \mathrm{B}\), C, D, E, S) have been invariably set. Point numbers can be entered.
The point number is incremented automatically by 1 .
The code that has been set is saved with every measurement until being modified by the user.
\begin{tabular}{|c|c|c|c|}
\hline -1. & \multicolumn{3}{|l|}{ㅁ.. 미든} \\
\hline IL & ®. ®® & & \\
\hline - & ®. ®® & &  \\
\hline E3C: & TESt. & 4 & Ok \\
\hline
\end{tabular}

\section*{Station Point Memory Trimble 3303DR / 3305DR}

In a non-volatile instrument memory, the following data are retained after switching the instrument off and overwritten with every new determination:

Station coordinates
Instrument height
Reflector height
Scale
Orientation

Y,X,Z
ih
th
m
Om

The coordinates of the station point are calculated or entered by means of the coordination programs.
During the following operations (Stake-out / Polar/Detail points), the user can access this memory at the respective parts of the program and does not have to enter the values again. After having changed the station, these values have to be calculated or again entered in the course of the program.

\section*{Special Features of Trimble 3306DR}

The Trimble 3306DR (the instrument is not fitted out with a data memory) has a memory location for another single point (coor-memory) containing the coordinates of this point \((Y ; X ; Z)\) in a non-volatile form.
This memory location permits a simple transmission of coordinates (stationing with "Unknown station") with the Trimble 3306DR and spares the user the trouble to take the coordinates down or to enter them twice.
\begin{tabular}{|l|}
\hline Trimble 3300DR \\
principle \\
of transmission of \\
coordinates \\
"Unknown station" \\
\hline
\end{tabular}

- Station pt.
- - Auxil. pt.

Window of the Trimble 3306DR when calling coordinates


Method:
The station coordinates S1 are known or have been calculated by means of a coordinate program. The coordinates of point K1 will be calculated with the program „Polar/Detail Points" and saved in the "coor-memory" with Hinl.


After placing the instrument on \(S 2\), the coordinates of the points S1 (last station) and K1 (coor-memory) are called with the stationing program "Unknown station" and used for determining the coordinates of S 2 .
Now, the coordinates of the point K2 can be calculated with the program "Polar/Detail Points" and stored in the "coor-memory". After changing the position of the instrument to \(S 3\), the coordinates of this point will be calculated in analogy to station S2.

\section*{Coordinates}

\section*{Unknown Station}

If it is not possible to occupy a point with a known position in order to sight the points to be surveyed or set out, a free stationing can be carried out.
If all backsight points have a known height, the \(Z\) coordinate can also be determined simultaneously. A maximum of 5 points can be measured!
All measurements have to be done in combination with a distance measurement


By measuring to \(2 . .5\) known Backsight Points (A.. E), the instrument will calculate the station coordinates \(\mathrm{X}_{5}, \mathrm{Y}_{5}, Z_{s}\) the Hz circle orientation \(\mathbf{O m}\) and the scale \(\mathbf{m}\).
The following description is done for a stationing "with stationing in elevation". The procedure without stationing in elevation is almost identical.

\section*{Stationing in Elevation}

ESC to go to the coordinates menu
L with: input of instrument height
L without: no calculation of height

L Dad Principles First steps

Data management


Input of instrument height


\section*{Note!}

In a free stationing with height determination, all backsight points must have a height coordinate. It is not possible to use individual backsight points separately according to position and height.
The height is calculated by simple averaging.

\section*{Tip!}

If not all backsight points are provided with a height coordinate, the method without height is to be applied. Subsequently, the station height can be determined separately by measurement to one point using the "Stationing in elevation" program.

\section*{Measurement „Unknown Station"}
\begin{tabular}{|c|l}
\hline A & to select BP A \\
\hline CHCK & \begin{tabular}{l} 
Adjusting and \\
checking
\end{tabular} \\
\hline
\end{tabular}

ESC to quit the program

Selecting the coordinates of BP A
L Dad Principles
First steps
[D] Editor
Data management

\(\begin{aligned} \text { th } & \text { to enter data for } \\ & \text { BP A (target hight) }\end{aligned}\)
\(\mathrm{ON}+\mathrm{PNO}\)
Point number of BP A to be changed?

MEAS to measure to BP A

B to select BP B
A Measurement to BP \(A\) to be repeated?

After at least 2 measurements, approximate coordinates are calculated by software and the deviation to the current measurement is displayed.

\section*{ESC}
to quit the program
B
Measurement to BP \(B\) to be repeated?
to measure the next point \((E=5\).)

END
to display the residuals

\(\xrightarrow[+\rightarrow-1]{+\rightarrow-\text { Sight reflector }}\)


The operational steps for BP B....E are now carried out in analogy to BP A.


Explanation:
vy: Residual in Y-direction
vx: Residual in X -direction
vz: Residual in Z-direction
\& Tip !
Consequently, residuals can also be used to "Stake out" (seek) points, because the measurement of point can be repeated immediately.

More
to measure additional point
\(\boldsymbol{\uparrow}, \boldsymbol{\downarrow}\) to select point
Del to delete point
o.k. to display station coordinates
o.k. to display further parameters
\(\mathrm{ON}+\mathrm{PNr}\)
to enter the point number of the station

Rept to repeat the complete determination
m to edit the scale
o.k. to accept the coordinates, complete the program and go to the coordinates menu; to record

Display of residuals:


After confirming the residuals:


Display of the station coordinates:


Explanation:
m : calculated scale
Om: orientation unknown
s 0 : \(\quad\) standard deviation of the weighting unit (mean point error)

\section*{Note!}

It is possible to go backwards and remeasure the corresponding points, whereby the intermediary points get lost.
But it is more recommendable to complete the measurement (calling the residuals) after three backsight points, delete and remeasure the corresponding direction. New measurements are added at the end.
Consequently, the assignment of the point codes (A, B, etc.) are shifted.
\begin{tabular}{|c|l}
\hline- & scale \\
\hline+ & to edit \\
\hline & \begin{tabular}{l} 
to accept scale, to \\
go to the residuals \\
menu
\end{tabular} \\
\hline o.k.
\end{tabular}

Scale menu


If the scale is outside the permissible range, an error message appears.

Note !
After the scale has been confirmed, the station coordinates are recalculated. Then, the residuals can be evaluated once more.

\section*{Recording}
(1)] Presettings First steps

If recording is activated, the following lines are saved in dependence on the settings:

Designation of the mode
Point numbers and code
backsight point A, B, C, D, E
Y,X,Z Coordinates
SD,Hz,V Readings
\(v y, v x, v z\) backsight point residuals
Y,X,Z Coordinates of station point S
m,Om Scale and circle orientation
s0 Standard deviation of the weight unit

Coordinates

\section*{Known Station}

If it is possible to occupy a point with a known position in order to sight the points to be surveyed or set out, a stationing on a known point can be carried out.


By measuring to a known Backsight Point A , the instrument will calculate the circle orientation \(\mathbf{O m}\) and the scale \(\mathbf{m}\).

Measurement ,,Known Station"
\(\mathbf{S}\) to call station S
CHCK


Adjusting and checking


ESC
to quit the program
Selecting the coordinates of station S
L Pd Principles
First steps
[1] Editor
Data management

\section*{After defining S :}

There are two ways to calculate the orientation.
Hz see below
XY
page 4-11
S to repeat station S


\section*{Orientation using a known Azimuth}

The orientation using a known azimuth will be selected if the bearing angle between the station and the backsight point is known (for example calculated from coordinates) and a distance measurement to the backsight point is impossible.
\(\nabla\) to set the required direction by turning the instrument

MEAS to clamp the Hz set direction
\(\rightarrow \quad\) to sight the known point
MEAS allocation is completed

YES to confirm, record, quit the program
NO to reject, new start
\(\rightarrow \mathrm{Hz}\) S0.3. 88709rd 1) turn to Hz 2) HOLD

법ㅋㅋ쿨 ETC:


Display of results and recording

\section*{Orientation using known Coordinates}

This orientation method will be used if the coordinates of the backsight point are known.

Selecting the coordinates of BP A

L Principles
First steps
[1] Editor
Data management

\section*{L SD/Hz/V}

Distance and
bearing
measurement
\(\mathrm{Hz} / \mathrm{V}\)
Bearing
measurement


Point number of BP
A to be changed?
MEAS to BP A


YES to confirm the orientation, continuation

\section*{NO}
to reject the orientation, new start
new to accept the new scale
old to transfer the orientation accepting an old scale
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Ol.} &  \\
\hline  & IrF & 「1E\| \\
\hline
\end{tabular}

Display of results and recording

Inp to transfer the orientation entering any scale

\section*{Rept}
to repeat the calculation

\section*{Recording}
(1)d Presettings

First steps

If recording is activated, the following lines are saved in dependence on the settings:

Designation of the mode
Point numbers and code
\(Y, X \quad\) Coordinates of station point
\(Y, X \quad\) Coordinates of backsight point \(A\)
\(\mathrm{SD}, \mathrm{Hz}, \mathrm{V}\) Readings for backsight point \(A\) according to selection
m,Om Scale and circle orientation
according to selection
\(\mathrm{Hz} \quad \mathrm{Hz}\) set direction
\(V \quad\) Vertical angle at Hz

\section*{Coordinates}

\section*{Stationing in elevation}

Stationing in elevation permits the determination of the height above Mean Sea Level independently of planimetric stationing. In programs involving local coordinates, in particular, the absolute height can be included in the measurement.

given.: : \(Z_{p}\)
meas.: : \((S D, V)_{s-p,}\) ih, th
requ.: \(: Z_{s}\)
The station height is determined by measurement to a Backsight Point with a known height.

Measurement ,,Stationing in Elevation"

Stat to go to the input menus

CHCK
[1]
Adjusting and checking

ESC to quit the program


Enter one after another:
Z, ih, th:


Example th:


\section*{MEAS}

YES to confirm, record, quit the program

NO to reject, new start

(1)] Presettings

First steps

If recording is activated, the following lines are saved in dependence on the settings:

Designation of the mode
Point numbers and code
th Reflector height at backsight point (only if changed)
ih Instrument height (only if changed)

SD, Hz, V Readings for backsight point
Zs New station height
\(\mathrm{Zi} \quad\) Hight of sight line (trunning axis)

\section*{Coordinates}

\section*{Polar/Detail Points}

Determination of the coordinates and heights of new points by distance and direction measurements.

The coordinates can be computed in a higher-order system of coordinates.

Local coordinates can be determined in the standard measurement menu.

\[
\begin{array}{ll}
\text { given.: } & :(Y, X, Z)_{\text {S, }}, O m, m \\
\text { meas.: } & :(S D, H z, V)_{S-p} \\
\text { requ.: } & :(Y, X, Z)_{P}
\end{array}
\]

YES
to confirm the station coordinates and to continue in the program
to reject, new start - stationing
to change the scale

Scale：
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { BGl. } \\
& \text { Gr' }
\end{aligned}
\] & \multicolumn{4}{|c|}{1．Diolid 15} \\
\hline & ＋ & － & & ORK \\
\hline
\end{tabular}

Reference direction：
\begin{tabular}{|c|c|c|c|c|}
\hline RE「 & ロロ & \(\square \mathrm{I}^{-}\) & ． 0 & ＜？ \\
\hline & 30］ & 825 & 5 srid & \\
\hline Nil & & & & \\
\hline
\end{tabular}

Instrument and station heights：


\section*{\＆Attention！}

If neither a stationing in elevation has been realised beforehand nor Zs is entered now， all heights \(Z\) will be related to the station height \(\mathrm{Zs}=0\) ．
If ih is not entered either，all heights \(Z\) will be related to the trunnion axis height \(\mathrm{Zi}=0\) ．

Measurement „Polar/Detail Points"
\begin{tabular}{l}
-71 \\
\\
\hline ECC
\end{tabular}
\(\rightarrow 2\)
to change pages over

ECC eccentric measurement

INTS to activate software Intersection
th to enter the reflector height of the new point
\(\mathrm{ON}+\mathrm{PNO}\)
to enter point number and code of the new point


Display of results and saving


\section*{CHCK}

凹
Adjusting and checking

MEAS to start the measurement


\section*{Tip}

The measurement can be triggered both on display pages 1 and 2 .
After the measurement, the program returns to the page where the measurement has been triggered.

\section*{Eccentric Measurement}

If points cannot be measured directly, the eccentric measurement option can provide the solution. Spatial eccentric target measurements are very helpful especially for indoor surveys.

Inp to enter the length

\section*{MOD}
to change the mode
o.k. to accept

ESC to quit the menu

spatial eccentricity

The graphics does not change!


Type of target eccentricity (softkey MOD)
Tv: in front of the centre
Th: behind the centre
Tl: left of the centre
Tr: right of the centre
Ts: spatial relative to the centre
Viewing direction:
Centre of the instrument !

\section*{Note!}

Height calculation is based on the assumption that centre and eccentricity have the same level. This does of course not apply to the Ts type (spatial) (calculation of the real height of the centre).

Display before eccentric measurement is started
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|r|}{49996\% . 47 ¢m} & \multirow[b]{2}{*}{E×C} \\
\hline \(\times\) & -(D) & - & 8 m & \\
\hline \(\Sigma\) & \multicolumn{3}{|r|}{\%ior 725} & \\
\hline E-7 & E×C & t.ror & CHEX & \(\cdots\) \\
\hline
\end{tabular}

\section*{Note!}

The eccentricity set is effective only once. position eccentricities

\section*{Intersection}

To measure edges and corners in DR mode it is recomended to use the program "Intersection".

INTS select Intersections

\(\llcorner\)
to select / activate mode - Corner-Angle mode - Intersection mode - Eccentric Object


Corner-Angle
A measure points to determine the plane by
using angle and distance measurement
angle measurement to determine \(P\)

MEAS measurement


Activate one of three programs to measure edges or corners.


This method is used to measure points, edges and corners on vertical planes.
Measurements to the points \(A\) and \(B\) can be repeated.

Any point of the plane can be measured.


Intersection perpendicular

\section*{A, measure points}

B to determine the first plane and the second plane
point of the corner (inner or outer) to be measured

MEAS measurement


Intersection general
\begin{tabular}{|c|l|l|}
\hline A & B & measure point \\
\hline \(\mathbf{C}\) & D & to determine
\end{tabular} \left\lvert\, \begin{tabular}{l} 
both planes \\
\hline P
\end{tabular} \begin{tabular}{l} 
point of the \\
corner (inner or \\
outer) to be \\
measured
\end{tabular}\right.

MEAS measurement


This method is used to determine the instersection point of two vertical planes. The planes do intersect under a perpendicular angle. Measurements to the points \(A, B\) and \(C\) can be repeated.

Result of the measurement is the coordinate of bottom point of the corner.
In the set of original measurements only the horizontal angle is recorded!


This method is used to to determine the instersection point of two vertical planes. The planes do intersect under a general angle.
Measurements to the points \(A, B, C\) and \(D\) can be repeated.

Result of the measurement is the coordinate of the bottom point of the corner.
In the set of original measurements only the horizontal angle is recorded!


Eccentric Object
A , B measure point of the object Center point and radius are calculated

MEAS measurement


This method is used to determine the radius and the centre point of a vertical round object.

Measurements to the points \(A\) and \(B\) can be repeated.

Result of the measurement are the radius and the original measurements / coordinates of the centre point of the round object.

Note! There is no need anymore to select the point to be measured in the menu before measurement. Just aim to the target and start measurement!

Note! The DR support programs "INTS"are only accessible for the coordinates program "Polar/Detail Point" and in the measurement menu!

\section*{d Attention!}

Default Settings in DR mode:
th \(=0.000 \mathrm{~m}\)
Prism constant \(=0.000 \mathrm{~m}\)

\section*{DR-Menu}

To activate even more programs to support the DR mode.

DR-Menu
SHIFT + MENU

\section*{Dset}

DR-Menu
YES to select this menu

MEAS to call on menus of DR-Mode
mode - Standard \(\rightarrow\) Start
mode - Bearing-Distance
mode - Tracking \(\rightarrow\) Start

Standard \(\rightarrow\) Start
— to select / measure


Direct / standard measurement in DR mode.

> Note! Just aim to the target and start measurement pressing the button
> "Standard--> Start"!


\section*{Bearing-Distance}
1. First measurement bearing
2. Second measurement distance

MEAS measurement


This method is used to determine a corner.
First measurement is done to the corner and second measurement is done close to the corner.

Result of the measurement are the original measurements / coordinates of the corner point.

Note ! There is no need anymore to select the points \(A\) and \(B\) before to be measured in the menu measurement. Just aim to the target and start measurement!

MEAS measure bearing to the corner


TRK \(\rightarrow\) Start
L to select / measure
MEAS record results

Tracking mode


Note! Just aim to the target and start measurement pressing the button
"TRK-->Start"!

Note! The modes Standard->Start
Bearing-Distance
are usable in the programs "Coordinates" and "Applications" while the mode TRK->START
is furthermore usable in the programs "Polar/Detail" point and "Stake out" and in the measurement menu.
(1)] Presettings

First steps

If recording is activated, the following lines are saved in dependence on the settings:

Designation of the mode
Point numbers and code
m Scale (only if changed)
ih Instrument height (only if changed)

Zs
th

Tv,Th,Tr,TI,Ts Eccentricity
SD, Hz, V Polar coordinates
Y, X, Z Rectangular coordinates

\section*{Coordinates}

\section*{Stake Out}

Search points or stake out points in a given system of coordinates. A stationing is the prerequisite for stake out points on the basis of coordinates.

After having entered the coordinates of the point to be stake out and measured the approximate point, the Trimble 3300DR displays the result in the form of the longitudinal deviation dl, the transverse deviation dc, the angle Hz between the approximate point and the nominal point, the radial deviation dr and the deviations of the coordinates dx , dy and dz .

given.: : \((Y, X)_{S, P}\)
comp.: :(HD,Hz) \()_{\text {s-p }}\)
meas.: : \((\mathrm{HD}, \mathrm{Hz}, \mathrm{V})_{\mathrm{S}-\mathrm{N}}\)
comp.: : \((\mathrm{dl}, \mathrm{dc}, \mathrm{dr})_{\mathrm{P}-\mathrm{N}}\)

Confirmation of Stationing

YES to confirm the station coordinates /continue program

NO
to reject, new start - stationing
to change scale


Scale:


Reference direction:


Instrument and station heights:


NO to reject, new start - height stationing
ih/Zs to enter instrument and reflector heights
- stationing

YES to confirm and continue in the program
to confirm and continue in the program

NO to reject, new start

The following options for the stake out method are available：

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CHCK} & \multirow[b]{2}{*}{Adjusting and checking} & \multicolumn{5}{|l|}{\[
\begin{aligned}
& \text { Etヨド』 ロut } \\
& \text { Z: ロチf }
\end{aligned}
\]} \\
\hline & & EFC： & Y & HI & CHEX & \(z-1\) \\
\hline Z－n & Z－j & \multicolumn{5}{|l|}{Stake out with or without height} \\
\hline & Change with／without height & & & & & \\
\hline YXZ & YX & \multicolumn{5}{|l|}{Stake out using given coordinates} \\
\hline & see below & \multicolumn{5}{|l|}{or} \\
\hline HDh & HD & \multicolumn{5}{|l|}{using known stake out parameters} \\
\hline
\end{tabular}

\section*{Stake Out using known nominal Coordinates}

L


After defining the coordinates:
to turn the
instrument up to
\(\mathrm{Hz}=0\)
th to enter the reflector height
\(\mathrm{ON}+\mathrm{PNO}\)
Point number and code to be corrected?

MEAS to measure the approximate point

to continue see measurement results page 4-33

Stake Out using known Stake Out Parameters
Entering HD:

L HD 4.152 m Confirmation of the old value
\(\mathrm{HD}=0\)
Set to zero
L_DD Principles
First steps

入, to set the desired Hz value

MEAS 1st measurement to the approximate point


Defining the Hz value:

\(\mathrm{ON}+\mathrm{PNO}\)
Point number and code to be corrected?
th to enter reflector height


Measurement results see below

Measurement Results
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\rightarrow\) & to change over the different displays of results & \[
\begin{aligned}
& d . \\
& d i \\
& d r \\
& d r \\
& \hline
\end{aligned}
\] & \multicolumn{2}{|l|}{\begin{tabular}{l}
ㅁ. 미든 \\
ㅁ. 미민 \\

\end{tabular}} & HEAB \\
\hline \multirow[t]{2}{*}{Test} & \multirow[b]{2}{*}{see below} & ESC: & TESt. & \(\rightarrow\) & Ok \\
\hline & & \multicolumn{4}{|l|}{- -1 -} \\
\hline o.k. & \multirow[t]{6}{*}{to confirm the stake out and to record; to set out other points} & dx & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \\
\hline & & Hz & & &  \\
\hline & & ESE: & TESt. & - & Onk \\
\hline & & \[
\begin{aligned}
& -\mathrm{Z} \Xi \\
& \mathrm{~Hz}
\end{aligned}
\] & \begin{tabular}{l}
- (ロ5 \\

\end{tabular} & & \\
\hline & & & & & -ren: \\
\hline & & EST: & TESt. & 7 & ORE \\
\hline & & Display of & / recording & & \\
\hline
\end{tabular}

MEAS to repeat until the approximate point is close enough to the stake out point!

Additional measurement of the
stake out point (Test :


Display of results / recording

\section*{s-O Setting out, calling up next point}


Display of results and recording

\section*{Recording}

DD Presettings
First steps

If recording is activated, the following lines are recorded in dependence on the settings:

Designation of the mode
Point numbers and code
HD,Hz, Z or Nominal values
Y,X,Z
\(\mathrm{SD}, \mathrm{Hz}, \mathrm{V} \quad\) Readings for the point
\(\mathrm{dl}, \mathrm{dc}, \mathrm{dr} \quad\) Stake out differences
\(d y, d x \quad\) Stake out differences (only if nominal coordinates are used)
Stake out differences (only if the height is set out)
or
th Reflector height
(only if changed)
SD,Hz,V Readings and
\(Y, X, Z \quad\) Actual coordinates of check measurement

The chapter Applications describes typical configurations and computations for various measuring methods that are frequently used in practice.
The Menu Guidance 5-2
Connecting Distance 5-5
Object Height + Width \(\quad 5-10\)
Station + Offset 5-14
Vertical Plane 5-23

The guidance through the menu is very easy to understand and based on a unique schema for all programs.

\section*{Principle}

\section*{Applications}

Conn. Distances
with
[1] Coordinates
Stationing in
Elevation
see page 4-15
without
to start the program
ESC to quit the program

\section*{CHCK}


Adjusting and checking

A to start the program by calling point A

In the Connecting Distance and Station + Offset programs, the height reference can be established by a stationing in elevation (with) or by a measurement to the first point (without). The Object Height and Vertical Plane programs have own modes for a height reference.


After calling the respective program, a graphics appears with a detailed explanation of the program.


\section*{Tip}

The function of adjusting and checking is required for measurements to be carried out without/with compensator or for checking the adjustment of the instrument.


The display of A in negative type indicates the possibility to measure to point A.

> Tip

Prior to each measurement triggered with
MEAS it is possible to enter a point number and a code for the point to be measured.
The point number is incremented automatically by 1 without any need to lift a finger.
In the programs, the codes for defined points are invariably set ( \(A, B, C, S\) ) and cannot be changed. program by calling point B

ESC
to return to the higher-order menu
to repeat point \(A\) if required


If \(A\) has been calculated, measured or defined as station, the symbol for A (square) is filled. Now, the point \(B\) or \(P\) can be treated exactly the same way.
\[
\begin{aligned}
& \text { Tip } \\
& \text { If errors or confusions should occur whilst } \\
& \text { measuring to the points, the measurement } \\
& \text { to single points can be repeated } \\
& \text { immediately. }
\end{aligned}
\]

\section*{Applications}

\section*{Applications}

\section*{Connecting Distance}

If it is not possible to measure a distance between two points directly, the measurement to these points has to be started at a station point S . Then, the program calculates the distances SD,HD and the height difference \(h\) between the points.

\section*{Examples for application:}

Measurement of cross sections, checking the distances between points, boundaries and buildings


S
meas.: : (SD,Hz, V) \()_{\text {A, }, \text { i, }}\) th
requ.: : (SD,HD,h \()_{A \cdot p}(S D, H D, h)_{p-p} Z_{p}\)

Measurement „,Connecting Distance"

\section*{CHCK}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
 \\

\end{tabular}} & Aロ-- \\
\hline EGC: & 今 & CHEX \\
\hline
\end{tabular}
th to enter the reflector height of A
\[
\mathrm{ON}+\mathrm{PNO}
\]

MEAS to measure to point \(A\)


In measurements with stationing in elevation, the height \(Z\) of the point is additionally displayed.

A
Measurement to point \(A\) to be repeated?
to call point \(P\)
th to enter the reflector height of \(P\)
\(\mathrm{ON}+\mathrm{PNO}\)
MEAS to measure to point \(P\) different displays of results
\begin{tabular}{|c|l|}
\hline P-P & page 5-7 \\
\hline A-P & page 5-8 \\
\hline A & to repeat \\
& \(\begin{array}{l}\text { measurement to } \\
\text { point A }\end{array}\) \\
\end{tabular}
\begin{tabular}{|c|l|}
\hline P-P & page 5-7 \\
\hline A-P & page 5-8 \\
\hline A & \(\begin{array}{l}\text { to repeat } \\
\text { measurement to } \\
\text { point A }\end{array}\) \\
\end{tabular}
\begin{tabular}{|c|l|}
\hline P-P & page 5-7 \\
\hline A-P & page 5-8 \\
\hline A & \(\begin{array}{l}\text { to repeat } \\
\text { measurement to } \\
\text { point A }\end{array}\) \\
\end{tabular}
\begin{tabular}{|c|l|}
\hline P-P & page 5-7 \\
\hline A-P & page 5-8 \\
\hline A & \(\begin{array}{l}\text { to repeat } \\
\text { measurement to } \\
\text { point A }\end{array}\) \\
\end{tabular}
\begin{tabular}{|c|l|}
\hline P-P & page 5-7 \\
\hline A-P & page 5-8 \\
\hline A & \(\begin{array}{l}\text { to repeat } \\
\text { measurement to } \\
\text { point A }\end{array}\) \\
\end{tabular} point \(A\)

DSP to change over the


Tip
After completing the determination of the first connecting distance, there are two different methods for continuing the measurement:
polygonal measurement P-P or radial measurement A-P.

The method can be changed at any time after returning to the higher-order menu and selecting again.


Display of results and saving

\section*{Applications}

\section*{Polygonal Connecting Distance P-P}


S

The results are always related to the last two points measured.
th to enter the reflector height of the next point \(P\)

\section*{\(\mathrm{ON}+\mathrm{PNO}\)}


MEAS to measure to point \(P\)

Further points \(P\) :


Display of results and saving

\section*{Applications}

\section*{Radial Connecting Distance} A-P


S
The results are always related to point A .
th \(\quad\)\begin{tabular}{l} 
to enter the \\
reflector height of \\
the next point \(P\)
\end{tabular}

\section*{\(\mathrm{ON}+\mathrm{PNo}\)}


> MEAS to measure to point \(P\)

Further points P :
th , ON + PNO, MEAS


Display of results and saving
(1)] Presettings

First steps

If recording is activated, the following lines are saved in dependence on the settings:

Designation of the mode
Point numbers and code
SD, Hz, V Polar coordinates A,P
th, ih Reflector height, instrument height (only if changed)

SD, HD, h Connecting distance A-P or
SD, HD, Z Connecting distance A-P or
SD, HD, h Connecting distance P-P or
SD, HD, Z Connecting distance P-P

\section*{Applications}

\section*{Applications}

\section*{Object Height}

Heights of inaccessible points are determined by measuring SD,V to an accessible point in the plumb line. Only the angle V is measured to the inaccessible point.

Examples for application:
Determination of tree heights, widths of tree tops and trunk diameters, power lines, passageways and bridge profiles, setting out of heights on vertical objects

\[
\begin{array}{ll}
\text { meas.: } & :(S D, V, t h)_{A}, V_{P} \\
\text { requ.: } & : Z, H D,(O)
\end{array}
\]

\section*{Measurement ,,Object Height"}


Adjusting and checking

A to start by calling point A
th to enter the reflector height of A
\(\mathrm{ON}+\mathrm{PNO}\)
MEAS to measure to point \(A\)


\section*{Applications}

\section*{Measurement to point \(P\)}
\begin{tabular}{ll}
\hline\(P\) & to call point \(P\) \\
\hline\(O N+P N o\), \\
\(\rightarrow\) & to sight point \(P\) \\
\(M\) MEAS & \begin{tabular}{l} 
to measure to \\
\\
\\
\\
\\
point \(P /\) \\
further points \(P\)
\end{tabular}
\end{tabular}


Display of results and saving

\section*{Definition of a Reference Height ZSet}


Further points:
ON + PNO, MEAS


Display of results and saving

\section*{Applications}

\section*{Measurement beside the Plumb Line}


Further points:
ON + PNO, MEAS
to the left of the plumb line


Further points:
ON + PNO, MEAS
to the right of the plumb line

(1)] Presettings

First steps

If recording is activated, the following lines are saved in dependence on the settings:

Designation of the mode
Point numbers and code
SD, Hz, V Polar coordinates A
\(\mathrm{Hz}, \mathrm{V} \quad\) Measuring point P
HD,O,Z Measuring point \(P\)
Z Set value Z

\section*{Applications}

\section*{Station + Offset}

Determination of the rectangular coordinates of any point in relation to a reference line defined by the points \(A\) and \(B\).

\section*{Examples for application:}

Checking of point distances from a reference line, checking of boundaries, intersection of sight rails, determination of the distances of buildings from boundaries, footpaths or streets, alignment of long straight lines in the event of visual obstacles on the line,
surveying of supply lines and channel routes referred to roads and buildings,
free stationing in a local system


S
meas.: : \((\mathrm{SD}, \mathrm{Hz}, \mathrm{V})_{\mathrm{A}, \mathrm{B}, \mathrm{P}}\), th
requ.: : \((x, y, \omega)_{p}\), referred to line A-B
\(h_{A, B}, h_{A-P}\)

\section*{Measurement ,,Station + Offset"}

\section*{CHCK}
 point \(A\)

\section*{Applications}
to enter the reflector height of A

DSP
to change over the different displays of results
\(\mathrm{ON}+\mathrm{PNO}\)

MEAS to measure to point A
\(\mathrm{A}=\mathrm{S}\)
page 5-18

B
to call point B
A Measurement to point \(A\) to be repeated?
th to enter the reflector height of B
\(\mathrm{ON}+\mathrm{PNO}\)
MEAS to measure to point B
\(B=S \quad\) page 5-19


Display of absolute altitude Z (only with stationing in elevation carried out)

,

\begin{tabular}{|c|l}
\hline P & to call point \(\mathbf{P}\) \\
\hline B & B to be repeated? \\
\hline A & A to be repeated? \\
\hline
\end{tabular}
\(\begin{array}{ll}\text { th } & \text { to enter the } \\ \text { reflector height of } P\end{array}\)
\(\mathrm{ON}+\mathrm{PNO}\)
MEAS to measure to
\(\mathrm{P}=\mathbf{S} \quad\) page 5-19
DISP to change over the different displays of results

CONS to enter constants for \(x\) and \(y\) page 5-20
further points \(P\)
th to enter the
reflector height of \(P\)
\(\mathrm{ON}+\mathrm{PNO}\)
MEAS

The results refer to points A and B
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{array}{r}
3 \mathrm{Ba} \\
\mathrm{Ha}
\end{array}
\] & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { z. } 44 \mathrm{Em} \\
& \text { z. } 4 \mathrm{~m}
\end{aligned}
\]} & \multicolumn{2}{|l|}{} \\
\hline \({ }_{-}\) & İ & & & \(\square \square^{\prime}\) \\
\hline EFC: & 今 & B & P & [FF \\
\hline
\end{tabular}

Measurement to point \(P\)


The result can now be displayed in three different modes.


Display of results and saving \(y, x, h\)

\section*{Applications}

DSP to change over the different displays of results


Display of results and saving \(x, y, z\)


Display of results and saving \(x, y, \omega\)
\& Attention!
If the mode is changed after the measurement, the values will be converted and displayed in the new mode, but saved in this form only after the next measurement.

Tip
Change the mode before the measurement.

\section*{Applications}

The Station equals Point \(\mathbf{A} \quad \mathbf{A}=\mathbf{S}\)

\section*{\(\square\) \\ Dal Principles \\ First steps \\ YES \\ to confirm \\ No to reject}


B
to continue in the main program


Saving

\section*{The Station equals Point B}

B =S

\section*{[1] Principles}

First steps
to confirm
NO to reject

The results refer to points \(A\) and \(B(S)\)
to continue in the main program



Display of results and saving

The Station equals Point \(P \quad P=S\) (checking)


To continue in the main program:
th \(, \mathrm{ON}+\mathrm{PNo}, \mathrm{MEAS}\)


Display of results and saving

\section*{Applications}

\section*{Shifting the Coordinate Axes y, x}

If a line does not begin with the coordinate \(x=0,00\), the corresponding value can be entered after having measured the line. If it is a parallel line, the parallel distance y can be entered in the same way.
Consequently, the computation is always related to the new and parallel line.

CONS
to call the menu for defining axes


The result of a measurement to a point \(P\) is displayed as follows:


Input of shift values for y and x axes

Example: \(x=5,000 \mathrm{~m}\)
First steps
o.k. to confirm input


The change is recorded

MEAS to measure


Display of result after changing the origin of coordinates

\section*{e Tip}

The input of constants for y and x allows to set out parallel and rectangular lines in an elegant fashion making additional computations superfluous. This applies especially to the intersection of sight rails and setting out of axes.
(1)] Presettings

First steps

If recording is activated, the following lines are saved in dependence on the settings:

Designation of the mode
Point numbers and code
SD, Hz, V Polar coordinates A,B
th,ih Reflector height, instrument height (only if changed)

SD, HD, h Basis A-B
SD, Hz, V Polar coordinates P
\(y, x, h \quad\) Coordinates \(P\) or
\(y, x, Z \quad\) Coordinates P or
\(y, x, \omega \quad\) Coordinates \(P\) and angle \(\omega\)
\(A=S, B=S\)
and \(P=S \quad\) Information lines
\(Y, X, h \quad P=S\)
\(y, x \quad\) constants for \(y\) and \(x\)

\section*{Applications}

\section*{Vertical Plane}

A vertical plane is defined by angle and distance measurements to two points. The coordinates of further points in this plane are determined by an angle measurement only.

\section*{Examples for application:}

Surveying of building façades, heights of passageways, bridges or motorway signs, determination of coordinates in a vertical plane for the determination of heights and volume computations, setting out of sectional planes (planimetry and height) for façade construction


Measurement „,Vertical Plane"

\section*{CHCK}

Adjusting and checking

A to start by calling point A
\(\mathrm{ON}+\mathrm{PNO}\)
MEAS to measure to point \(A\) point A


B
to call point \(B\)
th
to enter the reflector height of B

\[
\mathrm{ON}+\mathrm{PNO}
\]

MEAS to measure to point B

P to call point \(P\)
\(\mathrm{ON}+\mathrm{PNO}\)

MEAS to measure Hz and \(V\) to point \(P\)

To measure to further points
hSet see below
xSet page 5-25
\(y\) page 5-26

\section*{\(\mathrm{P}=\mathrm{S}\)}
page 5-27


Display of results and saving


Display of results and saving
hSet - Determination of the Height Coordinate
L \(\quad \frac{\mathrm{h} \quad 0.000 \mathrm{~m}}{\text { Confirm the old }}\)\begin{tabular}{l} 
reference height (in \\
this case 0 )
\end{tabular}

Definition of the horizon:

LD Principles
First steps

\section*{Applications}

Input \(\mathrm{h}=1,00 \mathrm{~m}\)
\(\mathrm{ON}+\mathrm{PNO}\)
MEAS to measure Hz and \(V\) to point \(P\)

The results refer to the new height
To measure further points



Display of results and saving
xSet - Definition of the \(\mathbf{x}\) - Axis

L x 0.000 m Confirm the old reference height (in this case 0 )

- I Principles

First steps
Input \(x=1,00 \mathrm{~m}\)
\(\mathrm{ON}+\mathrm{PNO}\)
MEAS to measure Hz and
 V to the desired point \(P\)

\section*{Applications}

\section*{Vertical Plane}

The results refer to the new \(x\) - axis
(in this case, the desired and set zero point of coordinates has been measured)

To measure further points
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\cdots\) & ■. &  & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{}} \\
\hline \(\chi\) & 回. &  & & & \\
\hline 1 & 回. &  & & & \\
\hline EFE: & P=5 & -3프t. & Fist. & & - \\
\hline
\end{tabular}

Display of results and saving

\section*{\(y\) - Points in front or behind the Plane}

Definition of preceding sign
o.k. to confirm


L y 0.000 m
Confirm the old value
(in this case 0 )


\section*{L \(\quad y=0\)}

Set to zero
L_ ID Principles
First steps

After entering \(\mathrm{y}=0,350 \mathrm{~m}\) :
\(\mathrm{ON}+\mathrm{PNO}\)

MEAS to measure Hz and \(V\) to point \(P\)


Display of results and recording


NO to reject

Coordinates of \(S\) with reference to plane \(A-B\)
ESC
further points


\section*{Recording}
(1) Presettings

First steps

If recording is activated, the following lines are saved in dependence on the settings:

Designation of the mode
Point numbers and code
SD, Hz, V Polar coordinates A,B
th,ih Reflector height, instrument height (only if changed)

SD, HD, h Basis
\(\mathrm{Hz}, \mathrm{V} \quad \mathrm{P}\)
\(y, x, h \quad P\)
\(P=S \quad\) Information lines
\(Y, X, h \quad P=S\)

\section*{Applications}

\section*{Area Calculation}

\section*{Applications}

\section*{Area calculation}

Area calculation by measurement to the corner points or input of the corner point coordinates of the area or calling them from the memory. A direct combination of both methods is impossible (see page 5-29).

The area is limited by straight lines. Any number of corner points can be used.


S
\[
\text { meas.: : }(\mathrm{SD}, \mathrm{~Hz}, \mathrm{~V})_{\mathrm{A}, \mathrm{~B}, \mathrm{P}, \mathrm{P}}
\]
\[
\text { given.: }:(y, x)_{\text {A, } i}(Y, X)_{A, p i}
\]
comp.: : FI (A-B-C-Pi)

Range:
\[
0,01 \mathrm{~m}^{2} \pm 0,01 \mathrm{~m}^{2}<\mathrm{Fl}<90000000 \mathrm{~m}^{2}+1 \mathrm{~m}^{2}
\]

\section*{Measurement „Area Calculation"}

\section*{PRUE}


Adjusting and checking

A to start by calling point A


\section*{\& Attention!}

The points of the area are to be measured, called from the memory or entered in proper order. In each case, the last point can be repeated. It is not possible to insert a forgotten point subsequently.


\section*{Tip!}

If not all points can be seen from one station, the following procedure is recommendable:

Divide the corner points into groups so that all corner points can be seen from two or more stations.
\(1^{\text {st }}\) corner point group
Determination of corner point coordinates of the area by means of
- stationing in a local or global network and
- polar measurement of the \(1^{\text {st }}\) group

Coordinates of these points are now stored in the instrument memory
\(2^{\text {nd }}\) corner point group
Move the instrument to another place from where the remaining points of the area can be seen.
- stationing in a local or global network (as for the \(1^{\text {st }}\) group) and measurement of the remaining points
- all points are now stored in the memory

\section*{Starting the area calculation}
- Call the corner points of the area from the memory considering the order
This method works only in case of instruments with internal memory. The Timble 3306DR allows to measure the points only. It is possible, however, to calculate an area ( \(F\) ) to be covered through various stations. The subareas (F1 +F2) are arranged in such a way that they can be assembled to a total area. A stationing is not necessary for this purpose.
\(F=F 1+F 2\)

\section*{Applications}

MEAS to measure to point A or

YX Input or select memory coordinates of point A

DD. Principles
First steps
(D) Editor

Data management

ESC to quit the program
C
to repeat measurement to point C

P to continue in the program by calling point \(\mathrm{P}_{\mathrm{i}}\)
o.k. to quit the area calculation and store the result

The operational steps for point \(B\) and \(C\) are now carried out in analogy to point A.

After measuring to \(A, B\) and \(C\), the area is calculated for the first time:


Input coordinates


\section*{Applications}

Rept to repeat the last point Pi

P
to continue in the program by calling point \(P_{i+1}\)
o.k. to quit the area calculation and store the result

Display of result after measuring to another point Pi:


Tip!
Any number of corner points can be used.

\section*{Recording}
[1] Presettings
First steps

If recording is activated, the following lines are saved in dependence on the settings:

Designation of the mode
Point numbers and code
\(y, x\) or
Y,X Coordinates of points A, B, C, Pi
SD, Hz,V Reading of points \(A, B, C, P_{i}\)
Fl Area

Decisive features of an efficient work routine are the saving of the measured and computed values as well as the transfer of measured data to a PC and the transfer of coordinates from the PC to the surveying instrument. This chapter describes all processes necessary to meet these requirements. The section Editor only applies to Trimble 3303DR and Trimble 3305DR.
Editor 6-2
Data Transfer 6-8
Data Formats 6-15

User Interface
6-38
Remote Control 6-40

Recording Data Lines
6-63
Update 6-70

\section*{Calling the EDIT Menu}
ON EDIT


Display of the free data lines and address of the last data line written

\section*{Display of Data Lines}

\section*{Disp to go to memory} display
? to call search function
to change page
\(\uparrow\) to display preceding data line
\(\boldsymbol{~ t o ~ d i s p l a y ~ f o l l o w i n g ~}\) data line

ON PNo
allows to change point number and code


\section*{Searching for Data Lines}

\section*{? to call search function \\ ?P to search for point number}
?C to search for point code
?A to search for address
? 】 to continue search using the same criterion
to change page
\(\uparrow\) to display preceding data line
\(\boldsymbol{\downarrow}\) to display following data line

ESC to quit search routine


Input of the point number, code or address to be searched for


Tip
If no data line is found to which the search criterion applies, search is followed by an error message.

\section*{Deleting Data Lines}

Del to call the function ＂Delete＂


\section*{\＆Technical Information}

This function deletes all data lines or the data lines from a selected line number （address）to the last data line saved．

\section*{\＆Attention！}

The deletion is definite and irrevocable．To avoid any unintentional loss of data，most care has to be taken over this action！
all to select all lines
or from the line with point number xx


미…te ロナ

EGC
？C or from the line with code xx
？A or from the line with address xx

\section*{Example: search for point number 2}
? \(\downarrow\) to continue search using the same criterion

o.k. to confirm the line


For another check, the selected data lines are displayed again and have to be confirmed.

YES to confirm the selection

No to reject the
selection / quit the routine


\section*{Entering Data Lines}

Inpt to call the function ＂Input＂

to enter planimetric coordinates and heights

Z to enter heights

\section*{Example of a height input：}


ᄂ \(\mathrm{z}=0\)
Set the height to zero
\(\llcorner\) input
DD Principles
First steps

o.k.
to confirm

the page for readings

ON
PNo
to enter point number and code
o.k. to confirm and save

Input of further coordinates and heights with point number and code
(1)d Presettings

First steps




\& Attention !
The sequence and designation of the coordinate axes depend on the selected system of coordinates and the setting of the display of coordinates. The softkey \(Y \mathrm{X}\) and \(Y X Z\), respectively, is labelled according to this selection.

\section*{Introduction}

\begin{tabular}{lll}
\begin{tabular}{l} 
Data transfer can be performed \\
between \\
and
\end{tabular} & by \\
Trimble 3300DR & PC & cable
\end{tabular}

This allows an easy data exchange between instrument and computer.

Preparation on the Instrument
\(\mathrm{ON}+\) MENU

\section*{6 Interface}

YES to go to the menu MOD to change settings

Trimble 3300DR \(\Theta\) PC Connect both devices by the serial interface cable and start the necessary programs for data transfer.
Cable for data transfer Trimble 3300DR \(\Theta\) PC with protocol Xon/Xoff:

Order number
708177-9470.000

Main menu.

Menu Interface Trimble 3300DR


Interface parameters for transmitting and receiving project files:
Data format: R4, R5, Rec500 or M5
\begin{tabular}{ll} 
Baud rate: & 9600 \\
Parity: & even \\
Protocol: & Xon/Xoff \\
Stop bits: & 1 (not variable) \\
Data bits: & 7 (not variable)
\end{tabular}

Tip
For data transfer to and from the PC, you can use for example the MS-Windows \({ }^{\text {TM }} 98\) Hyperterminal program.

\section*{Preparation on the PC - Hyperterminal Settings}

Example for Windows \({ }^{\text {TM }} 98\) Hyperterminal program:

Set the PC for data transfer as follows:
Step 1


Settings:Connect using - Com port

Step2


\section*{Step 3}
\begin{tabular}{|c|c|}
\hline Eigenschaften von 33000. & ? \({ }^{\text {] }}\) \\
\hline Verbinden mit Einstellungen | & \\
\hline ASCII-Konfiguration & ? \({ }^{\text {a }}\) \\
\hline \multicolumn{2}{|l|}{\(\left[\begin{array}{l}\text { Einstellungen für den ASCII-Versand } \\ \Gamma \text { Gesendete Zeien enden mit Zeilenvorschub } \\ \nabla \text { Eingegebene Zeichen lokal ausgeben (lokales Echo) } \\ \text { Zeienverzögerung: } \\ \text { Zeichenverzögerung: } \\ \text { Zillisekunden. } \\ \text { Z }\end{array}\right.\)} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Einstellungen für den \(A S C I I\)-Emplang \\
I Beim Empfang Zeilenvorschub am Zeilenende anhängen \\
\(\Gamma\) Eingangsdaten im 7-Bit-ASCII-Format empfangen \\
V Überlange Zeilen im Terminalfenster umbrechen
\end{tabular}} \\
\hline \multicolumn{2}{|c|}{\(\square \mathrm{OK}\) Abbrechen} \\
\hline & OK Abbrechen \\
\hline
\end{tabular}

Step 4:
For sending or receiving a project file, select "Transfer"as shown below:


\section*{Step 5:}

To transmit a project file, select "Send text file" or "Receive text file".
\begin{tabular}{lll|l|}
\hline Capture Text & ? & \\
\hline Folder: & C:\Program Files\Accessories\HyperTerminal & \\
File: & Cessories\HyperTerminal\CAPTURE.TXT & Browse... \\
\hline & & Start & Cancel \\
\hline
\end{tabular}

\section*{Tip}

The format of the transmitted file is *.txt. For using the file with Trimble sensors, controllers or office software packages like TTC, TGO or TM the format *.dat is required. Therefore the file has to be renamed.

Data Transmission
\(\mathrm{ON}+\) MENU
6 Interface
YES to go to the menu

1 MEM－－－－＞Periphery
YES to confirm

Main menu：
Scrall until submenu Interface
Data transfer menu between
Trimble 3300DR and PC．
\begin{tabular}{|c|c|c|}
\hline 1 & \multicolumn{2}{|l|}{WEx－＞Prer iPrarer} \\
\hline \(\pm 2\) & 兄 & Eri \\
\hline EEIC & \(\downarrow\) & YES \\
\hline
\end{tabular}

Selection of the required data lines
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{} \\
\hline \multicolumn{5}{|l|}{data l．i hes} \\
\hline ¢「口ா & & & & \\
\hline ESC： & E1． 1. & FP & FT： & \％ \\
\hline
\end{tabular}

Editor

Data Management

YES to start

\section*{Tip}

Now，set the PC to „Receive text file＂．The instrument or program at the receiving end must be set to the receive mode before you can transmit the project file．


The data lines are transferred to the PC．

ESC to end data transfer


 ETC

32

\section*{Data Reception}
\(\mathrm{ON}+\) MENU
6 Interface
YES to go to the menu

2 Periphery ----> MEM
YES to confirm

The data lines are transferred to the Trimble 3300DR.

Main menu:
Scrall until submenu Interface
Data transfer menu between PC and Trimble 3300DR.


Enter the name of the source file into the PC
Start the transfer from the PC

\section*{Transferring}

\section*{ESC}

\section*{\& Attention !}

The instrument only accepts coordinates.

ESC
to end data reception


Tip
Time Out occurs after 30 seconds without data communication.

The message „Time Out" indicates a data error. After that, the program returns to the data transfer menu.

\section*{Introduction}

M5, R4, R5, Rec500 record format
(1]) Data transfer Data management
[D] User interface Data management

Trimble surveying instruments are used for measurement functions with different data processing requirements.
The Trimble 3300DR series allow densely packed internal measurement and result data lines to be output in various formats.

Four data formats which have grown historically are subject to on-site revision service for compatibility with customer instruments. Currently, M5 is the format to provide most comprehensiveness in definitions. It should be used preferentially for any other tasks.

This chapter describes the structure of data format and the type identifier of measured and calculated values.

\section*{\& Technical}

All instruments have a serial interface which ensures the data exchange.

\section*{\& Attention!}

Instead of the usual marks within the 27 digit point identification, the M5 data format of Trimble 3300DR is limited to a 12 digit point number and a 5 digit code.

\section*{Description of M5 data format}
",M5" -> 5 Measuring data blocks per data line:

1 Address block
1 Information block
3 numerical data blocks

The original Zeiss M5 data format is the common standard for all former Elta \({ }^{\text {® }}\) surveying systems and current Trimble 3000 systems
All 5 data blocks are preceded by a type identifier. The 3 numerical data blocks have a standard layout comprising 14 digits. In addition to the decimal point and sign, they accept numeric values with the specified number of decimal places.
The information block is defined by 27 characters. It is used for point identification (PI) and text information (TI e.g.).
The address block is comprised of 5 digits (from address 1 to 99999).

\section*{The M5 data line}

The data line of the M5 format consists of 121 characters (bytes). The multiplication of this figure by the number of addresses (lines) stored shows the size of the project file in bytes.

Blanks are significant characters in the M5 file and must not be deleted.

The example describes an M5 data line at address 176 with coordinates (YXZ) recorded in unit \(m\). The point identification of marking 1 is DDKS S402 4201. Column 119 includes a blank (no error code).

The end of the line has CR, LF (columns 120 and 121 , shown here as \(<=\) ).

Col. 120-121: Carriage Return \(<\), Line Feed
Column 119: Blank field, in case of error „e" Col. 114-117: Unit for block5

Column 99-112: Block5 value block

Column 96-97: Type identifier5 for block5
Column 91-94: Unit for block4

Column 76-89: Block4 value block

Column 73-74: Type identifier4 for Block4
Column 68-71: Unit for block3

Column 53-66: Block3 value block

Column 50-51: Type identifier3 for block3

Column 22-48: Information block PI or Tl (point identification PI or text information TI, TO etc.)

Column 18-20: Type identification2 Pla ( \(\mathrm{a}=1-0\), for 10 Markings) or TI

Column 12-16: Memory address of data line
Column 8-10: Type identifier1 Adr for address
Column 1-6: Defines M5 format
- blank
| separator
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Abbr.} & \multirow[b]{2}{*}{Description} & \multicolumn{3}{|l|}{Explanations to the data line} \\
\hline & & Digits & Characters & Meaning \\
\hline \[
\begin{aligned}
& \text { For } \\
& \text { M5 }
\end{aligned}
\] & Format identifier Format type & \begin{tabular}{l}
\[
3
\] \\
meas.
\end{tabular} & alpha 2 data blocks & Trimble 3300DR Format
alpha 5 \\
\hline Adr & Address identifier Value1 & \[
\begin{aligned}
& 3 \\
& 5
\end{aligned}
\] & alpha numeric & Value1 Memory address \\
\hline \[
\begin{aligned}
& \mathrm{T} 2 \\
& \mathrm{a}
\end{aligned}
\] & Type identifier Marking Value2 & \[
\begin{aligned}
& 2 \\
& 1 \\
& 27
\end{aligned}
\] & alpha numeric alpha & \[
\begin{aligned}
& \text { Value2 (Pla ,TI, TO...) } \\
& a=1,2,3, \ldots, 9,0 \\
& \text { Pl or TI }
\end{aligned}
\] \\
\hline T3
dim3 & \begin{tabular}{l}
Type identifier Value3 \\
Unit
\end{tabular} & \[
\begin{aligned}
& 2 \\
& 14 \\
& 4
\end{aligned}
\] & alpha numeric alpha & Value3 14-digit value 4-digit unit \\
\hline T4
dim4 & \begin{tabular}{l}
Type identifier \\
Value4 \\
Unit
\end{tabular} & \[
\begin{aligned}
& 2 \\
& 14 \\
& 4
\end{aligned}
\] & alpha numeric alpha & Value4 14-digit value 4-digit unit \\
\hline T5
dim5 & \begin{tabular}{l}
Type identifier \\
Value5 \\
Unit
\end{tabular} & \[
\begin{aligned}
& 2 \\
& 14 \\
& 4
\end{aligned}
\] & alpha numeric alpha & Value5 14-digit value 4-digit unit \\
\hline ? & Identifier & 1 & alpha & Error message, or - \\
\hline Special & characters & & ASCII code & Hex code \\
\hline | & Separator & 1 & ASCII 124 & Hex 7C \\
\hline - & Blank & 1 & ASCII 32 & Hex 20 \\
\hline < & CR (Carriage Return) & 1 & ASCII 13 & Hex OD \\
\hline = & LF (Line Feed) & 1 & ASCII 10 & Hex 0A \\
\hline
\end{tabular}

\section*{Additional data lines of M5 data format－Header／changed setting}
\begin{tabular}{|c|c|c|c|c|}
\hline  & \multicolumn{4}{|l|}{The additional M5 data lines are implemented to optimize the datatransfer（Import／Export）from and to the Trimble office software like TTC，TGO and TM．} \\
\hline  & \multicolumn{4}{|l|}{d Tip：Beginning with software version \(>5.61\) the additional data lines are implemented in the M5 data format．} \\
\hline  & \multicolumn{3}{|l|}{The Header is recorded after switch ON the instrument and begins with START and end up with END．} & ON the and end up \\
\hline  & \multicolumn{4}{|l|}{The new identifier in the M5 Format－Header} \\
\hline  & Abbr． & Description & Digits & Characters \\
\hline & 01 & Type instrumen & 2 & numeric \\
\hline & 02 & \＃instrument & 6 & numeric \\
\hline  & 03 & Version softwar & 3 & numeric \\
\hline & 04＊ & Language & 2 & numeric \\
\hline & 05 & Coord．System & 1 & numeric \\
\hline & 06 & Oder Coord．Sys & & numeric \\
\hline F & 20 & Position I & 1 & numeric \\
\hline 范 & 21 & Position C & 2 & numeric \\
\hline  & 22 & Position P & 2 & numeric \\
\hline 京象戠京象事京交 \(\frac{5}{2} \sum \frac{5}{2} \frac{5}{2} \frac{5}{2} \frac{5}{2} \frac{5}{2} \frac{5}{2}\)玄方京方京 & \multicolumn{4}{|l|}{＊Each language is coded with two numbers （see next page）！} \\
\hline
\end{tabular}
\begin{tabular}{lll} 
Coding of languages & Code & Language \\
23 & German \\
30 & English \\
31 & Czech \\
32 & Italian \\
33 & Croatian \\
34 & French \\
35 & Dutch \\
36 & Spanish \\
37 & Danish \\
38 & Polish \\
39 & Hungarian \\
40 & Japanese \\
41 & Turkish \\
42 & Russian \\
43 & Finnish \\
44 & Estonian \\
45 & Portuguese \\
\hline 45 & \\
\hline
\end{tabular}

Content of the Header Explanation of the example page 6-19

Abbr. Description Meaning of Example
\begin{tabular}{|c|c|}
\hline 01 & Type instrument Trimble 3305DR \\
\hline 02 & \# instrument 900005A \\
\hline 03 & Version software 6.82 \\
\hline 04 & Language 30 / English \\
\hline 05 & Coord. System xy \\
\hline 06 & Order Coor.Syst. yx \\
\hline 20 & Position I Start position 1 \\
\hline 21 & Position C Start position 11 \\
\hline 22 & Position P Start position 16 \\
\hline th & Target hight \(1,90 \mathrm{~m}\) \\
\hline ih & Instrument hight 1,60m \\
\hline i & Vertical index cor.-0,0005 grd \\
\hline c & Sighting axis cor. \(0,0025 \mathrm{grd}\) \\
\hline SZ & Run Center comp.0,0060 grd \\
\hline T & Temperature \(20^{\circ} \mathrm{C}\) \\
\hline P & Air Pressure 1012 hPa \\
\hline PC & Prism constant -0,035m \\
\hline M & Scale 1,000000 \\
\hline
\end{tabular}

\section*{Changed settings}

Record changed settings of the instrument

Changed settings of the instrument are recorded permanent while the instrument is in operation. The menu „Record Settings" has to be activated (see pages 3-27, 3-28).

\section*{Record changed settings}


For your information only!
Trimble 3300DR -
Page 6-17

\section*{The point identification PI in M5 Format}

The PI is comprised of 27 characters. It starts in column 22 and terminates in column 48 in the M5 data line. The data structure within the PI is defined by markings. A maximum of 10 markings, marked in the preceding type identifier with PI1 to PIO (columns 18, 19, 20), can be designated to the PI (depending on the instrument).

The type identifier in the M5 Format
In the course of the time, requirements on the data format have increased. Therefore, the M5 Format carries most of the type identifiers of all available formats, always based on the preceding format (Rec500).

Type identifiers are defined by two characters (except for Adr). If only one character is necessary, the second character is a blank.

In the M5 Format there are 5 Type identifiers (TK) defined:

TK1: Adr Identifier address (Value1)
TK2: T2 Identifier information (Value2)
TK3: T3 Identifier 3. Value field (Value3)
TK4: T4 Identifier 4. Value field (Value4)
TK5: T5 Identifier 5. Value field (Value5)
Example:
„ \(\mathrm{Pl}{ }^{\prime \prime}\) for point identification or „TI" for text information can be used for T2. For T3, T4, T5, „D", ,"Hz", „V" or „Y", „X", ,"Z" can be used.

\section*{Description of Rec 500 data format}
"Rec500" stands for the description of the electronic field book Rec500.

1 Address block
1 Block Information
3 Numeric data blocks

With the electronic field book Rec500 a data format was developed which was created for Trimble / CZ instruments years ago and is today the base for the M5 format..

The Rec500 format is divided in 5 marking blocks (analogous the M5 format). These blocks differ in their block length from the M5 format, 80 characters (Bytes) are available on a data line.

\section*{The Rec500 Data line}

The data line in the Rec500 format is comprised of 80 characters (Bytes).

Abbr. Description
\begin{tabular}{ll} 
W1 & Address \\
PI & Point identification
\end{tabular}

Digits Characters Meaning (w. example)
4 numeric Memory address
27 num / alpha Point identification (14digits) and additional information (13 digits)
\(\left.\begin{array}{lllll}\text { T1 } & \begin{array}{l}\text { Type identifier } \\ \text { 1. Value }\end{array} & 2 & \text { num / alpha } \\ & & 12 & \text { numeric }\end{array} \begin{array}{l}\mathrm{D}=\text { slope distance } \\ \mathrm{E}=\text { horizontal distance } \\ \mathrm{Y}=\text { coordinate, etc. }\end{array}\right\}\)

Special characters
\begin{tabular}{lll} 
- & Blank & 1 \\
< & CR (Carriage Return) & 1
\end{tabular}
\(=\quad\) LF (Line Feed) 1

ASCII code Hex code
ASCII 32 Hex 20
ASCII 13 Hex OD
ASCII 10 Hex OA


Column 79-80: Carriage Return \(<\), Line Feed \(=\)

Column 70-78: 3. Value block
Column 68-69: Type identifier for 3. Value

Column 54-66: 2. Value block

Column 52-53: Type identifier for 2. Value

Column 39-50: 1. Value block

Column 37-38: Type identifier for 1. Value

Column 23-35: additional information of PI (alpha numeric)

Column 9-35: Point identification PI

Column 9-22: Point Number of PI (numeric)

Column 4-7: memory address of data line
Column 1-3: 3 Blanks
- Blank

\section*{The point identification in Rec500 Format}

For information only!
Trimble 3300DR - page
6-25

The PI is divided into two areas:
Area 1: numeric area for point marking (point number)
Area 2: alpha numeric area for additional point information

\section*{Description of R4 and R5 (M5, Rec 500) format of Trimble 3300DR}
„R4" stands for the data recording format of the Trimble 3300DR instruments containing 4 measuring data blocks:

1 Information
3 numeric Data blocks
„R5" stands for the data recording format of the Trimble 3300DR instruments containing 5 measuring data blocks:

1 Address block
1 Information block
3 numeric Data blocks

\section*{Abbr. Description}

For Marking format
R4, R5 format type R4, R5

Adr Address marking
<aa> Value1
\(\mathrm{Tk} \quad\) Type identifier Info
<Info> Info
\(\mathrm{Ti} \quad\) Type identifier Value
\(\mathrm{i}<\mathrm{Wi}>\) Value \(\mathrm{i}(\mathrm{i}=1,2,3\) )
dimi \(\operatorname{dim} i \quad(i=1,2,3)\)

ID] Special characters
M5 Data format

Two data recording formats - R4 and R5 - are available in the Trimble 3300DR total stations. Both formats can be chosen in the instruments. Depending on the setting with or without address, either data record format R5 (with address) or R4 (without address) can be used.

\section*{R4 and R5 format data lines}

The data line in the R4 format contains 80 characters (Bytes). It is comprised of an information block and 3 numeric value blocks. The data line in the R5 format contains 89 characters (Bytes). It is comprised of one address block, one information block, 3 numeric value blocks.
Both formats contain the same type identifiers for each block..
Digits Characters Meaning

3 alpha Trimble 3300DR Format
2 alpha

3 alpha 3 digits for marking
4 numeric
alpha
num / alpha
Type identifier TR or KR Info for data line
num / alpha Type ID Value block numeric Value block Value i alpha Unit block Value i

The special characters ■, |, < and = are analogous the M5 format.

\section*{The R4 Data line}

Column 79-80: Carriage Return < , Line Feed = Column 74-77: Unit for 3. Value block

Column 62-72: 3. Value block

Column 59-60: Type identifier for 3. Value block Column 54-57: Unit for 2. Value block

Column 42-52: 2. Value block

Column 39-40: Type identifier for 2. Value block
Column 34-37: Unit for 1. Value block

Column 22-32: 1. Value block

Column 19-20: Type identifier for 1 . Value block
Column 11-17: Data line information (alpha numeric)

Column 8-9: Type identifier information
Column 1-6: Defines R4 format

■ Blank | Separator

\section*{The R5 Data line}


Column 88-89: Carriage Return < , Line Feed = Column 83-86: Unit for 3. Value block

Column 71-81: 3. Value block

Column 68-69: Type identifier for 3. Value block
Column 63-66: Unit for 2. Value block

Column 51-61: 2. Value block

Column 48-49: Type identifier for 2. Value block
Column 42-46: Unit for 1. Value block

Column 31-41: 1. Value block

Column 28-29: Type identifier for 1. Value block
Column 20-26: Data line information (alpha numeric)

Column 17-18: Type identifier information
Column 12-15: Memory address of Data line
Column 8-10: Type identifier Adr for address
Column 1-6: Defines R5 Format

■ Blank | Separator

\section*{The point identification in the R4/R5 Format}

For a point identification in the R4 and R5 format are max. 7 digits available.

The PI is controlled by two Type identifiers, TR and KR, which describe the kind of PI.

TR Type identifier for a text information block

KR Type identifier for a PI with code and point number.
Point number: \(\begin{aligned} & 0 . . .9, \text { right-aligned, } \\ & 4 \text {-digit }\end{aligned}\)
Point code: 0...9, Blank, \# 3-digit

The 3 digit code can be combined with additional characters. It is suggested to use the character \# for marking incorrect measurements.

\section*{Trimble 3300DR - Marking in the M5 / Rec 500 Format}

The Trimble 3300DR uses a mark which is saved internal in the instrument. This mark consists of 3 blocks with clearly defined block lengths. The user can manipulate the order of the 3 blocks. Examples:
Layout gage: \(1 \quad 10 \quad 20 \quad 27\) 123456789012345678901234567

Sample Marking: PPPPPPPPPPPP CCCCC IIIIIII
Sample Marking: IIIIIII CCCCCPPPPPPPPPPPP
Meaning:
PPPPPPPPPPPP 12-digit point number
CCCCC 5 -digit point code
IIIIIII 7-digit information block

\section*{Tip}

The information block ( \(\mathbf{I}\) ) is left-aligned, the code (C) and point number ( \(\mathbf{P}\) ) are rightaligned.
Upon data conversion to the R4 / R5 format, the point number and point code will be shortened to 5 and 3 digits, respectively. The right-aligned digits remain.

Change settings of Trimble 3300DR Markings in the M5 / Rec 500 format
\(\mathrm{ON}+\mathrm{MENU}\)
6 Interface
YES
go to the menu

MOD to change setting


Tip
In case of overlapping information in the blocs, the instrument returns into its initial settings (default).

\section*{Trimble 3300DR -Markings in R4/R5 format}

In instruments of the Trimble 3300DR series one marking can be used.

In both the R4 and R5 format 7 characters are available for point identification and marking.

The PI is controlled by two type identifiers TR and KR, which mark the kind of the PI.

TR Type identifier for one text information block

KR Type identifier for a PI with code and point number.
\begin{tabular}{ll} 
Point number: & \begin{tabular}{l}
\(0 \ldots\), , right-aligned, \\
4-digit
\end{tabular} \\
Point code: & \begin{tabular}{l}
\(0 \ldots . .9\), Blank, \# \\
\(3-d i g i t ~\)
\end{tabular}
\end{tabular}

The 3 digits in the code can be combined with any applicable character. It is sug gested, to use the character \# to mark incorrect measurements.

Examples:
Layout gage:
Text information:
Point number and code:
TI 1234567
TR IIIIIII
KR CCCPPPP
Meaning:
IIIIIII 7-digit Text information block
CCC 3-digit Code block
PPPP 4-digit Point number block
In the M5 / Rec500 Format a 5-digit code and a 12-digit point number are used. In the R4 / R5 Format the established digits (3 and 4, respectively) remain right-aligned.

\section*{Definition of type identification}

Definition

Type ID's are defined with two characters.

Type identifiers are assigned to the 5 measuring data blocks of pre-set codes, which show the number or character value of the block.

\section*{Type identifiers - CZ Formats M5,R4,R5,Rec500 (Trimble 3300DR)}
\begin{tabular}{lll} 
Type identifier ,???? \\
A & \(2,3,4\) & Meaning \\
a & 6 & Distance addition constant \\
Adr & - & Horizontal angle of orthogonal line \\
B & & Address (the only TK with 3 characters) \\
c & \(3,4,5\) & V-angle of control point \\
c_ & \(2,3,4\) & Collimation correction \\
dl & \(2,3,4,5\) & Sighting axis error \\
dq & \(2,3,4\) & Rangitudinal deviation \\
dr & \(2,3,4\) & Coordinate Difference /Deviation in X direction \\
dx & \(2,3,4\) & Coordinate Difference /Deviation in Y direction \\
dy & \(2,3,4\) & Coordinate Difference /Deviation in Z direction \\
dz & 2,3 & Horizontal distance \\
HD & \(3,4,5\) & Hz rotation \\
HV & \(3,4,5\) & \(\pm\)
\end{tabular}
\begin{tabular}{llll} 
Type identifier ,???? & \(\pm\) & Meaning \\
h & \(2,3,4\) & \(\pm\) & Height difference of a station \\
i & \(3,4,5\) & & Index correction \\
ih & \(2,3,4\) & & Instrument height \\
KR & & & Information Trimble 3300DR with \\
code and point number
\end{tabular}

\section*{Data Management}

\section*{Data Formats}
\begin{tabular}{lll} 
V3 & \(3,4,5\) & Vertical angle: height angle \\
V4 & \(3,4,5\) & Vertical angle: slope in [\%] \\
vy & \(2,3,4\) & backsight point residuals \\
vx & \(2,3,4\) & backsight point residuals \\
vz & \(2,3,4\) & backsight point residuals \\
X & \(2,3,4\) & X-Coordinate \\
x & \(2,3,4\) & x-Coordinate (lokal) \\
y & \(2,3,4\) & y-Coordinate (lokal) \\
Y & \(2,3,4\) & Y-Coordinate \\
y & \(2,3,4\) & y-Coordinate (lokal) \\
Z & \(2,3,4\) & Z-Coordinate (Height above MSL)
\end{tabular}

\section*{Description Value blocks}

3 Value blocks

In each of the Trimble Elta \({ }^{\circledR}\) formats three value blocks are available whose number of digits depends on the format:
\begin{tabular}{lllll} 
Format & \multicolumn{4}{l}{ Value1 } \\
\hline Value2 & Value3 & dim \\
\hline M5 & 14 & 14 & 14 & 4 \\
R4/R5 & 11 & 11 & 11 & 4 \\
Rec500 & 12 & 13 & 9 & -
\end{tabular}

All value blocks are preceded by a type identifier which specifies the function of the succeeding value.

In the M5 and R4 / R5 Format for the value block exists a unit (dim), which follows, 4-digit (divided by a Blank), the value block.

The values are typed right-aligned in the blocks.
Decimal point, digits after the comma and definitions of preceding characters correspond to the internal instrument specifications.

\section*{\(d\) Caution!}

If the files of the Trimble Elta \({ }^{\circledR}\) Formats are entered manually, it is important to remember that upon using the data in the instrument the digits after the comma and the units need to be adjusted correspondingly.

The following units are defined:
Angle measurement
Distances, Coordinates
Pressure
Temperature
Standard, PR etc.

C, F
gon, DEG, DMS, mil, grad, \%
m , ft
Torr, hPa, inHg
no unit

\section*{Trimble Elta \({ }^{\circledR}\) Format ID and address block}

Trimble Elta \({ }^{\circledR}\) Format ID in Columns 1-6

Address blocks

Adr 00001 or
Adr \(\quad 1\) is allowed.

For M5 Format marking for M5 Format
For R4 Format marking for R4 Format
For R5 Format marking for R5 Format
"For" and the marking M5, R4 or R5 are divided by a Blank (ASCII 32).
An exception is the M5 Format for the former GePoS \(®\) receiver:

For_M5 Format marking M5 Format for former GePoS® receiver of software versions less than V3.7:

In this case, „For" and the marking M5 is divided by a "_" (ASCll 95).
From V3.7 on, the Format marking is For m5.
In the formats M5, R4 and R5 a marking which corresponds to the format precedes the data line.

The Formats M5, Rec500 and R5 have an address block which marks the data line with the current memory address. In the M5 and R5 format, a type identifier Adr is activated:
\begin{tabular}{lllc} 
Format & TK & Column & Digit \\
\hline M5 & Adr & \(12-16\) & 5 \\
R5 & Adr & \(12-15\) & 4 \\
Rec500 & none & \(4-7\) & 4
\end{tabular}

The address entry is right-aligned. Zeros can be used but are usually omitted. The first data line starts with the memory address 1.

Direct data output from the instrument to the printer or form the PC:
The R4 data recording format ensures problem-free printout on A4 printers, with each print line comprising one data line. To achieve the same with the R5 data recording format, the following should be noted:
- Direct data transmission to a printer: Select condensed font in the printer or use A 3 printer
- Printing data from a DOS editor: Select condensed font in the printer or use A 3 printer
- Printing from a WINDOWS task:

Do not use true type font or proportionally spaced font, but e.g. Courier
Select a small type size
Use landscape print format

\section*{\& Attention!}

For printing of data lines from the instrument at a printer is a serial type of printer interface necessary.

\section*{Introduction}

This charpter decribes the conditions of data transfer, the pin assignment of the interface and key codes and function requests for controlling the instrument by a computer.

\section*{What is an Interface?}

Hardware interface

Software interface

User interface

An interface is the point of contact between two systems or system areas, i.e. the point where information is interchanged. To ensure that it is understood by both the transmitting and receiving unit, specific rules must be defined for the transmission of signals and data.

This is a physical connection between functional units such as measuring instruments, computers or printers.
Of significance for the user are:
- shape and pin assignment of the connectors on the functional units and connecting cables
- The data transmission method. The parameters and protocols for transmission control

Software interfaces establish the link between programs or program modules. The data to be transmitted must conform to a defined structure: "The record format".

This is also called user guidance, important for handling of a system.

Interfaces between the user and the system are the monitor, the keyboard and the options for user guidance provided by the software. In the Trimble 3300DR concept, special emphasis has been placed on the design of the user interface.

\section*{Data Management}

\section*{Hardware interface}


Interface functions:

Pin assignment of the interface /connecting cable


Pin assignment (exterior view of connector), 8 -pin female stereo connector

The interface for the peripheral equipment is of the asynchronous, serial type and conforms to DIN 66020 standard (V 24 / RS 232 C).

The interface is provided on the slip ring connection.
(1) Data transfer:

Direct transmission of measured data between Trimble 3300DR and the connected peripheral instrument (computer, printer,...).
A series of transmission parameters are available for the control of this process.
(2) Software updates for the Trimble 3300DR can be loaded via this interface .
\begin{tabular}{l|l|l|l} 
Pin & Signal & Direction & Designation \\
\hline 1 & - & - & \\
2 & - & \\
3 & Ground & - & Ground \(\left(-U_{\text {batt }}\right)\) \\
4 & SD & - & Output \\
5 & ED & Input & Transmitted data \\
6 & Veceived data & In & \begin{tabular}{l} 
External power \\
supply \(\left(+U_{\text {batt }}\right)\) \\
7
\end{tabular} \\
& Vcc & In & \begin{tabular}{l} 
External power \\
supply \(\left(+U_{\text {batt }}\right)\)
\end{tabular} \\
8 & Ground & - & Ground \(\left(-U_{\text {batt }}\right)\)
\end{tabular} Connecting cables:
Cable 7081779460000 is used for external data recording/remote control (e.g. Map500) and for data transfer to a PC. You can also use cable 7081779470000 (with angled plug) if the Trimble 3300DR is installed on a tripod during data transfer.
For remote control from TSC1/TSCe use cable 7081809001000.

\section*{Introduction}

This charpter decribes the conditions of data transfer, data transmission protocols, overviewe about key codes and answers of the PC for the instrument control.

\section*{XON/XOFF Control}


The XON/XOFF protocol is a very simple, but efficient data transmission protocol. It is preferably employed for so-called terminal programs (e.g. Hyperterminal under Windows or Xtalk) and can be used in data recording from the Trimble 3300DR to a computer.

\section*{Rec 500 Software Dialog (Rec 500 Protocol)}


Control diagram of the "Rec 500 software dialog"

The following definitions apply to the time values entered in the control diagram:
\(t_{1}\) : Interval between signal A from Trimble 3300DR and the response from the recording unit with signal B , and interval between the end of data transfer and the acknowledgement with signal B.
\(0>\mathrm{t}_{1}<\mathrm{t}_{\text {(Time-Out) }} \quad \mathrm{t}_{1}=20 \mathrm{~s}\)
The recording unit may respond without delay to the recording request from the Trimble 3300DR. However, the selected time-out \(\mathrm{t}_{\text {(Time-out) }}\) must not be exceeded; otherwise an error message is displayed and external recording is deactivated. The Trimble 3300DR assumes that no external recording unit has been connected.
\(\mathrm{t}_{2}\) : Interval between the acknowledgement of the reception of a data line by the connected recording unit with signal B and the transmission of a further data line. Depending on the type of recording line involved, this amounts to
\[
10 \mathrm{~ms}>\mathrm{t}_{2}<100 \mathrm{~ms}
\]

Rec 500 software dialog is also suited for data transmission to the Trimble 3300DR. The control diagram is identical to the one shown above, with the designations of the transmitted data line and received data line being interchanged, as data is now transmitted by the peripheral unit.

\section*{Key Codes and Function Requests}

If the Trimble 3300DR is controlled by a computer or external data logger／controller，the keys can be emulated with the following codes：

Key Codes：
\begin{tabular}{|c|c|c|c|}
\hline Key & Code & Key & Code \\
\hline F1 & T31．」 & \(\mathrm{ON}+\mathrm{F} 1\) & TB1．」 \\
\hline F2 & T32．」 & \(\mathrm{ON}+\mathrm{F} 2\) & TB2．」 \\
\hline F3 & T33．」 & \(\mathrm{ON}+\mathrm{F} 3\) & TB3．」 \\
\hline F4 & T34．」 & \(\mathrm{ON}+\mathrm{F} 4\) & TB4．」 \\
\hline F5 & T35．」 & ON＋F5 & TB5 」 \\
\hline MEAS & T4D．」 & ON＋MEAS & TCD \(\downarrow\) \\
\hline \multicolumn{4}{|l|}{」 symbol for CR／LF} \\
\hline
\end{tabular}

The Trimble 3300DR can be controlled either by key pressure or，equally，from a connected computer．Each recognized key code is acknowledged by the Trimble 3300DR with＇Q．ل＇； in the event of errors such as incorrect syntax of the call or data transmission errors，the response is＇ \(\mathrm{E} . \mathrm{J}\)＇．

Each function request is answered with a data line in the selected format．The with／without address setting（format setting）is effective．Only the XON／XOFF protocol is used．
\begin{tabular}{|c|c|}
\hline Code & Meaning \\
\hline FKO」 & Compensator reading in sighting direction \\
\hline FMD．」 & Slope distance SD \\
\hline FMW」 & Angle readings Hz ，V \\
\hline FMS \(\downarrow\) & SD，Hz，V \\
\hline FMR．」 & \(\mathrm{HD}, \mathrm{Hz}, \mathrm{h}\) reduction \\
\hline FMK． & \(y, x, h\) local coordinates \\
\hline FL0」 & Laser Pointer OFF \\
\hline FL1」 & Laser Pointer ON \\
\hline FPL． & Prismen mode（Standard Range－default） \\
\hline FPH， & Prismen mode（Long Range） \\
\hline FDR」 & Direct reflex mode \\
\hline
\end{tabular}

\section*{\＆Attention！}

The values entered for scale，addition constant，index and collimation correction are taken into account in all function requests．

\section*{Parameters:}
```

Reading: ?KTTT.ل
Response: ! KTTT\Delta\Delta|1234567890123456\Deltaunit.d
Setting: ! KTTT\Delta\Delta|12345678901234\Deltaunit.d
Response: Q+
The response to a reading command is identical
with the setting command.
In the event of errors such as incorrect syntax of
the call or data transmission errors, the response
is 'Ed'.

```

\section*{Designations:}
\begin{tabular}{|c|c|}
\hline ? K & fixed character string for reading \\
\hline ! K & fixed character string for setting \\
\hline TTT & type identifier (see examples) \\
\hline 」 & carriage return/line feed \\
\hline & separator, ASCII dec. 124 \\
\hline 1-6 & numerical value, 16 characters \\
\hline \(\Delta\) & blank, ASCII dec. 32 \\
\hline unit & unit of the associated numerical value, 4 characters or blanks \\
\hline Q & Acknowledgement \\
\hline
\end{tabular}

\section*{Examples for the parameter calls：}
\begin{tabular}{|c|c|}
\hline ？K00A．Instrument Identification & RO \\
\hline \multicolumn{2}{|l|}{！K00A \(\Delta \Delta \mid \Delta 702718-0000.730 \Delta \Delta \Delta \Delta \Delta \pm\)} \\
\hline ？KOOa．ل Serial Number & RO \\
\hline \multicolumn{2}{|l|}{！K00a \({ }^{\text {a }}\) ，\(\Delta \Delta 209187 \Delta \Delta \Delta \Delta \Delta 」\)} \\
\hline ？KSND．ل Acoustic Signal & RW \\
\hline \(!\mathrm{KSND} \Delta \Delta \mid \Delta a \Delta\) Bit \(\Delta \downarrow\) & （a＝0：aus，a＝1：an） \\
\hline ？KAPO．Automatic Shutoff & RW \\
\hline \(!\mathrm{KAPO} \Delta \Delta \mid \Delta a \Delta\) Byte」 & \[
\begin{aligned}
& (a=0: \text { aus }, \quad a=1: 10 \mathrm{~min} \\
& a=2: 30 \mathrm{~min})
\end{aligned}
\] \\
\hline ？KP20」 Compensator & RW \\
\hline ！KP20 \({ }^{\text {a }}\) ，\(\Delta \Delta a \Delta\) Bit \(\Delta \downarrow\) & （ \(\mathrm{a}=0\) ：off \(, \quad \mathrm{a}=1:\) on） \\
\hline ？KSPR」 Vertical Angle Display & RW \\
\hline \(!\mathrm{KSPR} \Delta \Delta \mid \Delta a \Delta\) Bit \(\Delta\) 」 & （ \(\mathrm{a}=0\) ：Grad， \(\mathrm{a}=1: \%\) ） \\
\hline ？KSVR」 Vertical Reference System & RW \\
\hline ！KSVR \(\Delta \Delta \mid \Delta ) ZZZZ」 & \begin{tabular}{l}
（ZZZZ＝ZEN ：zenith angle， \\
ZZZZ＝VERT：vertical angle， \\
ZZZZ＝HGHT：height angle）
\end{tabular} \\
\hline ？KSKO」 Coordinate System and Display & Sequence RW \\
\hline \(!\mathrm{KSKO} \Delta \Delta \mid \Delta \mathrm{ab} \Delta \Delta \Delta \Delta \Delta \downarrow\) & \[
\begin{gathered}
(a=1: x y, \quad a=2: y x, \quad a=3: n e \\
b=1: R W-H W, \quad b=2: H W-R W)
\end{gathered}
\] \\
\hline ？KSMW」 Angle Resolution and Unit & RW \\
\hline \(!\mathrm{KSMW} \Delta \Delta \mid \Delta 0.0005 \Delta \mathrm{gon} \Delta\) 」 & （0．0005／0．001／0．005 gon \\
\hline & 0．0001／0．0005／0．0010 DMS \\
\hline & \[
\begin{aligned}
& 0.0005 / 0.001 / 0.005 \mathrm{deg} \\
& 0.01 / 0.1 / 0.5 \mathrm{mil})
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{？KSMS」 Distance Resolution and Unit RW} \\
\hline \(!\mathrm{KSMS} \Delta \Delta \mid \Delta 0.001 \Delta \mathrm{~m} \Delta \Delta \Delta \Delta\) & （0．001／0．005／0．01 m \\
\hline & 0．001／0．01／0．02 ft） \\
\hline
\end{tabular}
\(\Delta\)－blank
？KSMT」 Temperature Resolution and Unit ..... RW
！KSMT \(\Delta \Delta \mid \Delta 1 \Delta C \Delta \Delta \Delta \_\) ..... （1 C／1 F）
？KSMD」 Pressure Resolution and Unit ..... RW
！KSMD \(\Delta \Delta \mid \Delta 1 \Delta h P A \Delta \_\) （1 hPa／1 Torr／0．1 inHg）
？KSZA．」 Compensator Run Center in Sighting Direction RW ！KSZ \(\Delta \Delta \Delta \mid \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta 0.00000 \Delta\) gon \(\Delta\) 」
？\(K B z \Delta . ل\) Compensator Reading in Sighting Direction ..... RO\(!K B z \Delta \Delta \Delta \mid \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta 0.00000 \Delta\) gon \(\Delta ـ\)
？Ki \(\Delta \Delta\) ．」 Index Correction ..... RW
！Ki \(\Delta \Delta \Delta \Delta \mid \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta 0.00000 \Delta\) gon \(\Delta\) 」
？Kc \(\Delta \Delta\) ．」 Collimation Correction ..... RW
\(!K c \Delta \Delta \Delta \Delta \mid \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta 0.00000 \Delta\) gon \(\Delta 」\)
？KHV \(\triangle\) ．」 Hz Rotational Angle ..... RW ！KHV \(\Delta \Delta \Delta \mid \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta 0.00000 \Delta\) gon \(\Delta 」\)
？KA \(\Delta \Delta\) 」 Addition Constant ..... RW！KA \(\Delta \Delta \Delta \Delta \mid \Delta 0.000 \Delta \mathrm{~m} \Delta \Delta \Delta \Delta\)
？Km \(\Delta \Delta\) ．」 Scale ..... RW
\(!K m \Delta \Delta \Delta \Delta \mid \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta 1.000000 \Delta \Delta \Delta \Delta \Delta \Delta\)
？KPA \(\Delta\) ．ل Air Pressure ..... RW \(!K P \Delta \Delta \Delta \Delta \mid \Delta 944 \Delta \mathrm{hPa} \Delta \_\)
？KT＿ロ」 Temperature ..... RW
！ \(\mathrm{KT} \Delta \Delta \Delta \Delta \mid \Delta 20 \Delta \mathrm{C} \Delta \Delta \Delta\lrcorner\)
？Kih \(\Delta\) Instrument Height ..... RW
！Kih \(\Delta \Delta \Delta \mid \Delta 0.0000 \Delta \mathrm{~m} \Delta \Delta \Delta \Delta\)
？Kth \(\Delta\) ．」 Reflector Height ..... RW ！Kth \(\Delta \Delta \Delta \mid \Delta 0.0000 \Delta \mathrm{~m} \Delta \Delta \Delta \Delta\)
？KY \(\Delta \mathrm{S} \downarrow\) Y Coordinate of the Station ..... RW
\(!\mathrm{KY} \Delta \mathrm{S} \Delta \Delta \mid \Delta 0.0000 \Delta \mathrm{~m} \Delta \Delta \Delta\) 」
\(\Delta\) - blank
```

?KX\DeltaS.d X Coordinate of the Station RW
! KX\DeltaS\Delta\Delta\Delta | \Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta 0.0000\Deltam\Delta\Delta\Delta\Delta,
?KN_S\& N Coordinate of the Station RW
! KN_S S\Delta\Delta | \Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta0.0000\Deltam\Delta\Delta\Delta\Delta.ل
?KE_S.\ E Coordinate of the Station RW
! KE_S S\Delta | | \Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta0.0000\Deltam\Delta\Delta\Delta\Delta」
?KZ\DeltaS.ل Station Height RW
! KZ\DeltaS\Delta\Delta| | |\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta0.0000\Deltam\Delta\Delta\Delta\Delta」
?KLN1.d Request for Language R0
! KLN1\Delta\Delta | \DeltaD_ _ | ل
The following parameter HzO takes up a special position：
？KHzO．the displayed Hz direction is output in the selected format
$!K H z \Delta \Delta \Delta \mid \Delta 0.00000 \Delta$ gon $\Delta 」$ sets the Hz direction to the preset value（here 0.00000 grad）

```

\section*{Designations：}
Ro parameter can only be read RW parameter can be read and set

All parameters are output in the selected units， resolutions etc．Parameters can be entered irrespective of the parameters currently set．If call or setting commands include errors of syntax or content，the Trimble 3300DR \(R\) answers with＇E」＇．
\(\Delta\)－blank

\section*{Trimble 3300DR controlled from Map500 or TSC1/TSCe}

Trimble 3300DR and external controllers / dataloggers

Since Trimble 3300DR is the ideal sensor system only the user can control the Total Station from external units supplied by Trimble.

Map500 (Graphical Field Information System) and TSC1/TSCe are optimal controllers for doing Intergated Surveying with the system Trimble 3300DR.

Command and data exchange can be performed between

Trimble 3300DR
"Data transfer cable"
Order number: 7081779460000
or
between
Trimble 3300DR
TSC1/TSCe
cable
"Cable TSC1/e to Trimble 3300 / 3600"
Order number: 7081809001000

\section*{d Attention!}

First connect both units, with the recommended cable, start and prepare Trimble 3300DR for remote control and than start and configure Map500 or TSC1/TSCe!

\section*{Trimble 3300DR and Map500 (V2.0)}

Operation and settings of Trimble 3300DR

Start and setup
Trimble 3300DR
\begin{tabular}{|c|c|}
\hline ON & Press key \\
\hline ON & MENU \\
\hline \multicolumn{2}{|l|}{6 Setting Interface} \\
\hline YES & to go to the menu \\
\hline ESC & to quit menu \\
\hline \(\uparrow\) & and \\
\hline \(\pm\) & to quit setting / to confirm change \\
\hline MOD & to change setting \\
\hline ESC & to quit menu \\
\hline \(\uparrow\) & and \\
\hline \(\pm\) & to quit setting / to confirm change \\
\hline
\end{tabular}

Each instrumenttype of the series Trimble 3300DR (Trimble 3303DR, / 305DR / 3306DR) can be used to be remote controlled.
This is as well valid for the instruments with extended temperature range
Trimble 3303 x-treme and Trimble 3305 x-treme.

Preparing the instrument for remote control

Switch ON the instrument.
Select the main menu.


Interface parameters


Interface parameters
Interface parameters for remote control:
Recording: V24/1
Data format: R4
Parity: even
Baud rate: 9600
Protocol: Xon/Xoff
Stop bits: 2 (not variable)
Data bits: 7 (not variable)

\section*{Data Management}

Operation and settings of Map500

Start Map500 at Field PC or PC
Select icon „Map500"

Map 500 can be opreated on any Field PC or on the PC in the office.

Select ,"Setup Total Station"

via icon:
"Setup Total Station"
or
via pull down menu:
Miscellanious \(\rightarrow\) Instrument \(\rightarrow\) Setup


Select type of instrument, interface parameters and instrument settings

Instrument: Trimble 3300DR
COM-port: COM1 - COM4
Setup status: DR mode
Laser pointer
for stationing: th= Theo ht: , ih= Staff ht:


\section*{Tip}

Switch between DR mode and PR mode and switch ON / OFF the laser pointer can be applied from Map500.
Press button „Setup status" in menu "Instrument Setup".

These functions can also be applied at the Trimble 3300DR Total Station.


Trimble 3300DR and TSC1 (V7.70) / TSCe (V10.0)

Operation and settings of Trimble 3300DR

Each instrumenttype of the series Trimble 3300DR
(Trimble 3303DR, / 305DR / 3306DR) can be used to be remote controlled.
This is as well validfor the instruments with extended temperature range
Trimble 3303 x-treme and Trimble 3305 x-treme.

Preparing the instrument for remote control

Switch ON the instrument.
Select the main menu.

\(\uparrow\) and
\(\downarrow\) to quit setting / to confirm change

\section*{Interface parameters}


Interface parameters

4 Setting Instrument
YES to go to the menu to quit menu
\(\uparrow\) and
】 to quit setting / to confirm change

Interface parameters for remote control:
\begin{tabular}{ll} 
Recording: & V24/1 \\
Data format: & M5 \\
Parity: & none \\
Baud rate: & 9600 \\
Protocol: & Xon/Xoff or Rec500 \\
Stop bits: & 2 (not variable) \\
Data bits: & 7 (not variable) \\
PC-Demo: & OFF
\end{tabular}
\begin{tabular}{|c|l|}
\hline MOD & to change setting \\
\hline ESC & to quit menu \\
\hline \(\boldsymbol{T}\) & and \\
\hline \(\boldsymbol{\psi}\) & to quit setting / to \\
\hline & \begin{tabular}{l} 
confirm change
\end{tabular} \\
\hline
\end{tabular}

5 Dset
MOD to change setting
ESC to quit menu
\(\uparrow\) and
\(\downarrow\) to quit setting / to confirm change

Angle measurement unit


Accuracy of displayed angle reading


EDM / distance measurement parameters


Laser pointer


Laser pointer OFF:
OFF
1 Input

YES
ESC to go to the menu to quit menu
\(\uparrow\) and
to quit setting / to confirm change

Input PC, m, T, P


Input Prism constant


Use the same methodology for setting the Prism Constant to change the temperature and pressure settings.

\section*{d Attention!}

It is recommended that the prism constant is set in the Trimble 3300DR, not in the Trimble Survey Controller. However, if you choose to set the prism constant to zero in the
Trimble 3300DR you should apply a prism constant in the TSC1/TSCe.
Furthermore it is recommended to set the scale to 1.000 and if a scale is to be applied, it is done in the TSC1/TSCe, using the coordinate settings available.
\& Attention!
Even though the correction values have been set in the 3300 Total Station, the information will not be passed to the TSC1/TSCe because the distances passed to the TSC1/TSCe already have the corrections applied.

Operation and settings of TSCe

\section*{\& Attention!}

The screen shots are based on the Trimble Survey Controller TSCe. However, the same screens and settings can be followed though in the Trimble Survey Controller TSC1.

Main menu


Configuration


Survey styles

Select function key "New"

Select „Survey" style name and „Survey" style type

Enter to confirm settings /change and quit / enter next submenu

Create Survey style Trimble 3300DR


Survey style Trimble 3300DR

Enter Survey new style name and style type


Style name e.g. Trimble 3300DR. For style type choose „Conventional".

Select „Instrument"

Submenu „Instrument"

Enter to confirm settings /change and quit / return to higher level menu

Confirm / change settings in submenus, e.g. „Instrument", „Target details" and „Corrections".

Submenu „Instrument"


Selection setting „Instrument"

Change / confirm settings of instrument


Set manufacturer, model, interface parameters, update rate and precision of instrument.

Instrument parameters

Submenu „Target details"

Enter to confirm settings /change and quit / return to higher level menu

Instrument parameters for remote control:
\begin{tabular}{ll} 
Manufacturer: & Trimble \\
Model: & Trimble 33000DR \\
Baud rate: & 9600 \\
Parity: & none \\
HA VA status rate: & \(2 \mathrm{~s} /(1 \mathrm{~s})^{1}\) \\
Instrument prec.: & no setting needed \\
\({ }^{1} \mathrm{HA}=\mathrm{Hz}\), VA \(=\mathrm{V}\) &
\end{tabular}

Change / confirm setting of target details


Set prism constant and target hight.
\& Attention!
Ensure that the prism constant is set to 0.0 mm . Unless it has been set to 0.0 mm in the Trimble 3300DR Total Station.
See also page 6-56!

Submenu „Target details"

Enter to confirm settings /change and quit / return to higher level menu (Trimble Survey style menu)

\section*{Corrections}

Change / confirm setting of environmental factors activate / deactivate corrections of earht curvature and refraction


Set ppm, air pressure and temperature.
Enviromental corrections for remote control:
PPM: 0
Pressure: do not enter a value
Temperature: do not enter a value
Curvature and refraction: none

\section*{\& Attention!}

Air pressure and temperature they have already been applied by the Trimble 3300DR total station.
See also page 6-56!
The Trimble 3300DR Total Station automatically applies a earth curvature and refraction coefficient.

\section*{Data Management}

OK (TSC1) or Store (TSCe) to confirm settings and quit / return to higher level menu

\section*{Remote Control - TSC1/TSCe}
\& Attention!
Switch between DR mode and PR mode and switch ON / OFF the laser pointer can not be applied from the TSC1/ TSCe.

This has to be done at the Trimble 3300DR Total Station.

ON DR Switch between DR and PR mode

ON 潾

Switch Laser pointer ON / OFF




\begin{tabular}{|c|c|}
\hline  &  \\
\hline &  \\
\hline &  \\
\hline &  \\
\hline \begin{tabular}{l} 
od \\
H \\
0 \\
0 \\
0 \\
© \\
\hline
\end{tabular} & \begin{tabular}{l}
品品品品品品品品品品 \\
辿 \\

\end{tabular} \\
\hline \(\stackrel{4}{0}\) &  \\
\hline  &  \\
\hline  & \(x x x y\) x \(x\) x \(x\) \\
\hline \[
\begin{aligned}
& \dot{0} \\
& \dot{\otimes}+1
\end{aligned}
\] & \({ }^{x}\) \\
\hline \(\stackrel{ \pm}{3}\) & \\
\hline  & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
\％ \\
\(\varrho\) 릉
号皆
吕
\end{tabular} \\
\hline & － \\
\hline &  \\
\hline & 즈－呂츠흐으으－ \\
\hline &  \\
\hline &  \\
\hline &  \\
\hline  & \\
\hline
\end{tabular}


\section*{Introduction}

\section*{Trimble 3300DR \(\Theta\) PC} Connect both devices by the serial interface cable and start the necessary update program.
Cable for data transfer Trimble 3300DR \(\leftrightarrow\) PC with protocol Xon/Xoff:

Order number
708177-9470.000

An update is necessary if you load a new software version or if you want to change between the "Topo" and "Construction" software of the instrument.

Before starting the update, please save your data and use a fully charged accumulator battery.

The simplest way to get an update is via the Internet.

Homepage:
www.trimble.com

\section*{e. Attention!}

Different hardware versions require different update versions. Read all the instructions very careful.
In any case, please pay attention to the correct update - the correct instrument name when selecting the update files.
Once unpacked the files, the instrument type can no longer be concluded from them.
This update procedure describes the update of the former instruments Elta 40R, Elta 50R und Elta 50.
Doing the update with instruments younger generations please check the table below before:

Elta 40R \(\rightarrow\) Elta R45 \(\rightarrow\) Trimble 3303
Elta 50R \(\rightarrow\) Elta R55 \(\rightarrow\) Trimble 3305
Elta \(50 \rightarrow\) Elta R50 \(\rightarrow\) Trimble 3306

Preparation on the Instrument


MENU
6 Setting Interface
YES
to go to the menu
ESC
to quit menu
and
\(\downarrow\) to quit setting / to confirm change

MOD to change setting
ESC
to quit menu
\(\uparrow\) and
\(\downarrow\) to quit setting / to confirm change

Select the main menu.


Interface paramenters


Trimble 3300DR \(\Leftrightarrow\) PC Connect both devices by the serial interface cable and start the necessary update program.

Cable for data transfer Trimble 3300DR \(\leftrightarrow\) PC with protocol Xon/Xoff:

Order number
708177-9470.000

Interface parameters for receiving update files:
\begin{tabular}{ll} 
Baud rate: & 4800 \\
Protocol: & Xon/Xoff \\
Parity: & none \\
Stop bits: & 1 (not variable) \\
Data bits: & 8
\end{tabular}

\section*{8 Update/Service}

YES to go to the menu
ESC to quit menu
\(\uparrow\) and
\(\downarrow\) to quit setting / to confirm change

L to select / activate Update
Service EDM

ESC to quit menu
\begin{tabular}{|c|c|c|c|}
\hline \[
+\frac{\vdots}{3}
\] & \multicolumn{3}{|l|}{\begin{tabular}{l}
 \\

\end{tabular}} \\
\hline \% & \multicolumn{3}{|l|}{IFrat.} \\
\hline ESE & † & 4 & YعEㅡㅇ \\
\hline
\end{tabular}

Menu Interface Trimble 3300DR


Tip
First configure the interfaces at the instrument and the PC. Then start the program "Update" at the instrument and afterwards run the software update at the PC.


The Update is carried out between and through


\section*{Trimble 3300 PC cable}

This cable is also used for data transfer. The adapter included in the delivery allows the connection to 9 and 25 channel sockets.

\section*{Data Management Update}

Copy the contents of the diskette into a directory of your choice or start the software from the diskette (default).
Switch the instrument on and select the item Update.

\section*{Preparation on the PC}

\section*{[1] Please follow also the update instructions enclosed}
Esc : to end the program

\section*{Configuration}

Enter your data here.
The configuration can be stored subsequently.

Esc : to end mask input
\(\longleftarrow\) : to end line input

\section*{Elta 40R}

The question whether the Elta is in working order is to be answered in any case with YES.



\section*{Data Management}

Please follow now exactly the instructions given on the screen.

\section*{\(\square\)}
to select the single steps


Trimble 3300DR display:

\section*{Update}

\section*{YES}
to go to the menu
NO to start update


\section*{ On PC! \\ Do not break!}

From now on, the PC software controls the instrument.

\section*{Update Elta 40R}

Selection of the language desired (if available)

Esc : to end selection of language


\section*{Starting Update}

\section*{Esc to start update}

This operation takes some minutes comprising the transfer of one file with 30 and 4 files with 514 data records each.


The end of the update is acknowledged by clear acoustic signals. The instrument is switched off by software. The update has now been completed.

Tip
If no connection is achieved, in all probability the wrong interface has been selected or there is an error in the reference.

Please pay also attention to a perfect cable connection.

The instrument adjustment defines all corrections and correction values for the Trimble 3300DR that are required to ensure optimum measuring accuracy.

Increased strain placed on the instrument by extreme measuring conditions, transportation, prolonged storage and major changes in temperature may lead to misalignment of the instrument and faulty measuring results. Such errors can be eliminated by instrument adjustment or by specific measuring methods.

Display page 2 :

\section*{CHCK}
to go to menu "Checking"

[1] Presettings
First steps

Additionally to activating and deactivating the compensator, this menu offers the following functions of checking and adjusting:
Determination of the vertical index correction (V index) and sighting axis correction ( Hz collimation).

Determination of the compensator run centre.

\section*{\& Attention!}

Before starting any adjustment, allow the instrument to adapt to the ambient temperature and make sure it is protected against heating up on one side (sun radiation).

\section*{Adjusting}

\section*{i}

\section*{Vertical Index} Correction

The vertical index error is the zero point error of the vertical circle with respect to the vertical shaft.

\section*{c \\ Sighting axis correction}

The sighting axis error is the deviation from the right angle between the trunnion axis and sighting axis.

\section*{k}

\section*{Trunnion axis correction}

The trunnion axis error is the deviation from the right angle between the trunnion axis and vertical shaft (adjusted by the manufacturer).

Another instrument error considered is:
the compensator run centre error


\section*{Adjusting}

MEAS to start measurement in the 2nd telescope position

\section*{\(\mathrm{c}=0 \quad \mathrm{i}=0\)}

Setting of values
\(\mathrm{c}=\mathrm{i}=0\).

The vertical index and sighting axis corrections should be recomputed after prolonged storage or transportation of the instrument, after major temperature changes and prior to precise height measurements.
These determinations are especially important due to the fact that the measurement is carried out only in the 1st telescope position in order to save time.

\section*{Tip}

Before starting this procedure, precisely level the instrument using the level.

To determine the corrections, sight a clearly visible target in Hz and V from a distance of approx. 100 m . The sighting point should be close to the horizontal plane (in the range \(V=100^{\text {grads }} \pm 10^{\text {grads }}\) ). Start in the second face!


The current \(\mathbf{c}\) and \(\mathbf{i}\) values are displayed in the readings window.
c sighting axis correction vertical index correction
new
to confirm the new values /
to record

\section*{old}
to confirm the old values


Display of results and recording

\section*{\& Attention!}

During the computation of the vertical index and sighting axis correction, the program also determines the compensator run centre.

If either the \(\mathbf{c}\) or \(\mathbf{i}\) value exceeds the admissible range of \(\pm 50 \mathrm{mgrads}\), the error message appears. The values are not saved, and the menu for new calculation is displayed again.

\section*{\& Attention!}

If the values remain outside the tolerance range, despite accurate sighting and repeated measurement, you should have the instrument checked by the service team.

\section*{Adjusting}

Compensator


MEAS to start
measurement in the 2nd
telescope position
\(\rightarrow \quad\) to turn \(\mathrm{Hz}=0\)
MEAS to trigger measure－ ment in the 1st telescope position

ESC to quit the adjusting menu

The Trimble 3300DR features a compensator that compensates any vertical shaft inclinations remaining after instrument levelling in the sighting axis direction．
To check the compensator，its run centre should be determined at regular intervals and in particular prior to precise height measurements．

\section*{Aは，i」stmerft Bomperise tor Et．art t 봅코} EGC
sz component in sighting axis direction
\begin{tabular}{|c|c|}
\hline  & \begin{tabular}{l}
\[
\Delta \mathrm{H} 工=\overline{\mathrm{O}}
\] \\
HEA：
\end{tabular} \\
\hline ESC： & \\
\hline
\end{tabular}

Display of results and recording：


\section*{\＆Attention！}

For the accurate determination of the run centre，it is essential that the liquid in the compensator is allowed to settle，i．e．any vibration of the compensator must be avoided．

The red laser beam used for measuring without reflector is arranged coaxial with the line of sight of the telescope, and emerges from the objective port. If the instrument is well adjusted, the red laser beam will coincide with the visual line of sight. External influences such as shock or large temperature fluctuations can displace the red laser beam relative to the line of sight.

\section*{\& Attention!}

Before starting adjustment, allow the instrument to adapt to the ambient temperature.

\section*{Inspection of the Laser Beam Direction}


\section*{Tip}

The direction of the beam should be inspected before precise measurement of distances is attempted, because an excessive deviation of the laser beam from the line of sight can result in imprecise distance measurements.

\section*{Adjusting the Laser Beam Direction}


Pull the two rubber plugs out of the adjustment ports on the top of the telescope housing. To correct the vertical position of the laser spot, insert the alan key into the adjustment port 1 close to the front lens and turn the key clockwise to move the laser spot down. To correct position of the laser spot laterally, insert the alan key into the adjustment port 2 close to the diopter and turn it clockwise to move the laser spot left. Finally check the coincidence of laser spot and hair cross. Throughout the adjustment procedure, keep the telescope pointing to the reflective target foil.

\section*{\& Technical}

At first the adjusting screws are of a high tension as they are self blocking. The screws will tighten automatically after the adjustment.

\section*{\& Attention!}

After adjustment, replace the plugs in the adjustment ports to keep out humidity and dust.

The annex contains a compilation of symbols, keys, formulae, constants and error messages as well as explanations of concepts used for the Trimble 3300DR Routine Total Stations.

Furthermore, it gives an overview of the technical data and instructions for maintenance and care of the instrument.
Overview Softkeys 8-2
Overview Key Functions 8-6
Geodetic Glossary 8-7
Technical Data 8-14
Formulae and Constants 8-21
Error Messages 8-26

Maintenance and Care
8-29
Transport Case 8-30

Trimble 3303 / 3305 x-treme 8-31

Setting the measuring mode:

\section*{HD}

\section*{xyh yxh}
neh enh

\section*{SD HzV}

\section*{\(\mathrm{Hz}=0\)}

HOLD

\section*{END}
th/ih
th
ih/Zs
\(\rightarrow 1 \quad \rightarrow 2\)
ft
gon
DMS

\section*{deg}

\section*{mil}

\section*{V \%}

VK1

V/ㅣㅣ
\begin{tabular}{|c|c|c|}
\hline vスヘィ & & \begin{tabular}{l}
Display of the height angle \\
（ \(\mathrm{V}=0\) at the horizon，\(-100<\mathrm{V}<100\) grads）
\end{tabular} \\
\hline \(\rightarrow \mathrm{Hz}\) & － Hz & Setting the Hz counting direction to clockwise Setting the Hz counting direction to anticlockwise （only in display） \\
\hline CHCK & & Calling the checking and adjustment menu \\
\hline ESC & & Terminating a function，quitting a submenu \\
\hline \(\uparrow\) & \(\pm\) & Selecting the next upper line in the bar menu／in the internal memory Selecting the next lower line in the bar menu／in the internal memory \\
\hline \(\epsilon\) & \(\rightarrow\) & Setting the cursor one character backward Setting the cursor one character forward \\
\hline ＋ & － & Incrementing a value Decrementing a value \\
\hline MOD & & Modification of the displayed value \\
\hline o．k． & & Confirmation of an entry \\
\hline YES & NO & Acceptance of an option Rejection of an option \\
\hline c／i & & Calling the function for the determination of the collimation and vertical index correction \\
\hline Comp & & Calling the function for the determination of the compensator run centre correction \\
\hline C－on & C－off & Activating the compensator Deactivating the compensator \\
\hline old & new & Retaining the old value Entering the new value \\
\hline Rept & & Repeating the process \\
\hline i＝0 & & Setting the vertical index correction to \(\mathrm{i}=0\) \\
\hline c＝0 & & Setting the collimation correction to \(\mathrm{c}=0\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline HD & HDh & & Stake out using known stake out elements without with height \\
\hline Z & & & Input of a height in the internal MEM memory \\
\hline Z-j & Z-n & & Changing to setting out: with height without height \\
\hline Test & & & Calling the measurement of the setting out points \\
\hline S-0 & & & Calling the stake out of the next point \\
\hline Stat & & & Starting stationing in elevation \\
\hline S & & & Input of station coordinates for Unknown Station \\
\hline Inp & & & Input of scale for planimetric stationing \\
\hline Hz & & & Input of Hz for Known Station \\
\hline Disp & Del & Edt & Display of data lines of the memory Deletion of data lines of the memory Changing the point number and point code of a data line \\
\hline ? & ?P & ?C & \begin{tabular}{l}
Search for: \\
data lines in the memory \\
a point number in the memory \\
a point code in the memory
\end{tabular} \\
\hline ? A & & & Search for an address in the memory \\
\hline ? \(\downarrow\) & & & Continue search according to the same criterion \\
\hline all & & & Selecting all data lines of the memory \\
\hline Ecc & & & Calling the program measure inaccessable points \\
\hline INT & & & Calling support programs for DR mode, calling program Intersection of vertical planes. \\
\hline
\end{tabular}

\section*{Overview Key Functions}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{MEAS} & First function \\
\hline & Starting a single measurement or Tracking mode \\
\hline \multirow[t]{2}{*}{ON} & First function \\
\hline & Switching the instrument on \\
\hline \multirow[t]{2}{*}{ON OFF} & Second function \\
\hline & Switching the instrument off \\
\hline \multirow[t]{2}{*}{ON DR} & Second function \\
\hline & Switch between DR and PR measure mode \\
\hline \multirow[t]{2}{*}{ON EDIT} & Second function \\
\hline & Calling the memory \\
\hline \multirow[t]{2}{*}{ON PNo} & Second function \\
\hline & Calling the input of point number and code \\
\hline \multirow[t]{2}{*}{ON MENU} & Second function \\
\hline & Going to the main menu \\
\hline \multirow[t]{2}{*}{ON 棌} & Second function \\
\hline & Switch Laser pointer ON / OFF \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & A \\
\hline Addition constant & Addition value for distance measurement, default 0 . \\
\hline Addition correction & Correction of the addition value ('addition constant") of the distance measuring instrument, e.g. if using prisms of other manufacturers. \\
\hline Alignment & Application program for the determination of any number of points on the straight line \(A B\).
B \\
\hline Backsight point BP & A point with known coordinates used for the station point determination and/or for orientation. \\
\hline Bearing angle & Hz bearing orientated to a reference bearing (generally to grid north). \\
\hline Bearing (Hz) & Value read in the horizontal circle of the instrument, whose accidental orientation is determined by the zero position of the graduated circle. \\
\hline & C \\
\hline Calibration scale & Influences systematically the distance measurement. Best possible adjustment to 1.0 by the manufacturer. Without influence on all other scale specifications. \\
\hline Code, code number & Reference number for the point description, characterises certain point types. \\
\hline Compensation & Automatic mathematical consideration of the vertical axis inclinations measured with the compensator in the sighting direction, in V angle measurements. \\
\hline Compensator & Used to determine the current vertical axis inclination in the sighting axis direction, can be deactivated and activated again, as required; a graphical symbol in the information menu displays the activated compensator. \\
\hline
\end{tabular}
Compensator run centre
Connecting distance
Control point
Coordinates
Default
Direct reflex mode
Distance measuring mode

\section*{Error limits}

\section*{Eccenticity}

Electronic centre of the clinometer in sighting axis direction.

Spatial distance, plane distance and height difference between 2 target points.

Point for checking the orientation of the instrument. It is defined at the beginning of a measurement and can be measured at any time for checking.

Measuring program for the determination of points in a higher-order coordinate system.

\section*{D}

Standard value for an instrument setting.
Distance Measurement mode without prism or reflective foil.

Depending on the purpose of application, the distance measurement is to be selected by pressing the MEAS key in the normal mode or the continuous distance measurement (tracking) is to be selected by pressing the MEAS key twice.

\section*{E}

Limit values which can be set by the user for certain readings or results.

Support program to measure inaccessable points.

\section*{F}

G

\section*{H}

See key functions.
The height of the station point is derived from measurements to known height points.

A predefined horizontal bearing value is allocated to the sighting direction to a measurement point.

Hz collimation correction

Incrementing

Instrument height

Interface

\section*{Intersection}

\section*{Key functions}

Levelling

Long Range mode
(also called collimation or sighting axis correction) Correction of the deviation of the sighting axis from its required position right-angled to the trunnion axis. Determination by measurement in two positions, automatic correction in the case of measurements in one position. I
(increment=interval) Automatic counting of the point number (increase by 1 ) after the measurement.

Height of the telescope trunnion axis above the station height (ground point).

Contact point between 2 systems or system areas, in which information is interchanged according to defined rules.

Support programs for DR mode, Program Intersection of vertical planes.

\section*{K}

First and second functions; for switching the instrument on, starting the measurement, switching off, illuminating the display, calling the memory, entering Pl and going to the main menu, starting of tracking.

\section*{L}

Vertical adjustment of the vertical axis of the instrument; the levels of the instrument are centred by turning the tribrach screws.
The levelling can be checked by means of the digital display of inclinations after pressing the softkey CHCK.

Extended distance measurement mode to prisms and reflective foil.
\begin{tabular}{|c|c|}
\hline & M \\
\hline \multirow[t]{2}{*}{Measuring mode} & \begin{tabular}{l}
In the measurement menu, the following measuring modes can be selected: \\
HzV display in the theodolite mode \\
HD display of reduced distance and height difference \\
yxh local rectangular coordinates \\
SD display of the original readings
\end{tabular} \\
\hline & 0 \\
\hline Object height & Determination of the height of points to which a direct distance measurement is impossible, by means of an angle measurement. \\
\hline Orientation & When orientating the instrument, the bearing angle of the zero of the graduated circle Omega (Om) is calculated. For this purpose, measurements to a backsight point can be made or the bearing angle of a known point can be entered. \\
\hline \multirow[t]{2}{*}{Orthogonal lines} & Application program to check lines for orthogonality, setting out right angles and especially for measurements in the case of visual obstacles. \\
\hline & P \\
\hline Parallel lines & Application program to check the parallelism of straight lines or for setting out parallels with only one point given. \\
\hline Point identification & Identification of the measured point by a maximum of 12 characters for the point number and up to 5 for the point code. \\
\hline Point number/Point code & Part of the point identification. \\
\hline Station + Offset & Application program for the determination of rectangular coordinates of any point in relation to a straight line defined by the points \(A\) and \(B\). \\
\hline Polar/Detail Point determination & Determination of the coordinates and height of new points by distance and bearing measurement. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & Q \\
\hline & R \\
\hline \multirow[t]{6}{*}{Recording mode} & \begin{tabular}{l}
Selectable in the menu Interface/Recording: \\
Off no recording \\
MEM/1 Recording of measured data sets in MEM (not for Trimble 3306DR)
\end{tabular} \\
\hline & MEM/2 Recording of computed data sets in MEM (not for Trimble 3306DR) \\
\hline & MEM/3 Recording of all data sets in MEM (not for Trimble 3306DR) \\
\hline & V24/1 Recording of measured data sets through V24 \\
\hline & V24/2 Recording of computed data sets through V24 \\
\hline & V24/3 Recording of all data sets through V24 \\
\hline Record current settings & Recording of Header and changed settings of instrument \\
\hline Reference point & Used here as reflector station for the indirect height determination. \\
\hline Reflector height & Height of the reflector (prism centre) above its station (ground point). \\
\hline Refraction coefficient & Measure for the light-beam refraction in the atmosphere; can be set by the user. \\
\hline Run centre & See Compensator run centre. \\
\hline & S \\
\hline Scale & With a scale, the measured distance is varied proportionally to the length and can thus be adapted to certain marginal conditions. There exist a series of direct and indirect scale effects: calibration scale, projection reduction, height reduction, reticle scale. \\
\hline Softkey & Function key which has several functions in dependence on the program. \\
\hline
\end{tabular}
Standard measurement

Standard settings

Stake out
Stationing

Stationing on
a known point

Tracking

Vertical axis inclination

The determination of points takes place within the local measuring system. The station of the instrument with the coordinates \((0,0,0)\) represents the zero point of this system of coordinates. The orientation is determined by the zero direction of the Hz circle. The data are fitted in a given system
of coordinates (Trimble 3306DR) only during the further processing (possibly in the office) or a stationing is carried out in order to measure in a given system of coordinates.

Values set by the manufacturer for all configuration parameters.

Program to stake out or search points.
Precedes any determination of points in a defined system of coordinates. Consists in the station point determination and/or calculation of the orientation of the graduated circle:
Stationing on a known or unknown point (free stationing), height stationing (height only).

Given: Station point coordinates / backsight bearing.
The scale and the orientation of the graduated circle are derived from the measurements to known backsight points.

\section*{T}

Continuous measurement of angles and distances. Hz and V values are constantly measured and displayed. Set permanent measurement for distance measurements.

\section*{V}

The inclinations of the vertical axis of the instrument in sighting axis direction are measured with the compensator, indicated digitally and can be requested on the display.

\section*{Annex} Geodetic Glossary

\author{
Vertical plane
}

Application program for the determination of points in a vertical plane by means of an angle measurement.

W
Z

\section*{Trimble 3303DR}

Trimble 3305DR
Trimble 3306DR

\section*{Angle measurement}

Accuracy as per DIN \(18723 \quad 1.0\) mgrad ( \(3^{\prime \prime}\) ) 1.5 mgrads ( \(5^{\prime \prime}\) )

\section*{Angle measurement}

Hz and V circles
Measuring units
Vertical reference systems
electronic absolute,
\(360^{\circ}\) (DMS, DEG), 400 grads, 6400 mils zenith, height and vertical angle, slope in percent

Least display unit (selectable)
\(1^{\prime \prime} / 2^{\prime \prime} / 10^{\prime \prime}\)
\(0.0005^{\circ} / 0.002^{\circ} 0.005^{\circ} \quad 0.0005^{\circ} / 0.001^{\circ} 0.005^{\circ}\) 0.2 / \(1 / 5\) mgrads \(\quad 0.5 / 1 / 5\) mgrads
\[
0.01 / 0.1^{1} / 0.5^{-}
\]

\section*{Telescope}

Magnification
Aperture
Length
Field of view at 100 m
Shortest sighting
Special features
26 x
40 mm
193 mm
2.9 m
1.5 m
variable reticle illumination
Distance measurement
Method (DR mode)
Transmitter/Receiver optics
Beam divergence
Resolution
Measuring units

Distance measurement time
Standard
Tracking
Standard
Tracking
Distance measurement
Accuracy as per DIN 18723
Prism Standard Tracking
Reflex Foil Standard Tracking
Direct Reflex Standard Tracking

Distance measurement
Range \({ }^{1}\)
with 1 prism
with 3 prisms
with reflective foil \(20 \times 20 \mathrm{~mm}\)
with reflective foil \(60 \times 60 \mathrm{~mm}\)
with 1 prism
with 3 prisms
with Reflex Foil 20x20mm
with Reflex Foil \(60 \times 60 \mathrm{~mm}\)
Direct reflex measurement \({ }^{2}\)
electro-optical, modulated red laser light \(660 \mathrm{~nm} /<1 \mathrm{~mW}\)
(internal: red laser diode \(660 \mathrm{~nm} /<1,1 \mathrm{~mW}\) )
coaxial, in telescope
\(0,4 \mathrm{mrad} / 1,5 \mathrm{mrad}\)
\(0,1 \mathrm{~mm}\)
alternate display of results in \(\mathrm{m} / \mathrm{ft}\)
Prism mode
2.0 s
1.2 s

Direct reflex mode
3 sup to \(30 \mathrm{~m}+1 \mathrm{~s} / 10 \mathrm{~m}\)
1,6 s
\(2 m m+2 p p m\)
\(5 \mathrm{~mm}+2 \mathrm{ppm}\)
\(3 \mathrm{~mm}+2 \mathrm{ppm}\)
\(5 \mathrm{~mm}+2 \mathrm{ppm}\)
\(3 \mathrm{~mm}+2 \mathrm{ppm}\)
\(10 \mathrm{~mm}+2 \mathrm{ppm}\)

Standard range
1,5m-3000m
\(1,5 m-5000\)
\(2,5 m-100 m\)
2,5m-250m
Long range
1000m-5000m
\(1000 \mathrm{~m}-7500 \mathrm{~m}\)
\(2,5 m-200 m\)
2,5m-800m
70m(Kodak Gray, 18\%) / 100m(Kodak Gray,90\%)

\section*{Trimble 3303DR}

Trimble 3305DR
Trimble 3306DR

\section*{Levelling}

Circular level
Tubular level
\(10^{\prime} / 2 \mathrm{~mm}\)
\(30 " / 2 \mathrm{~mm}\)

\section*{Compensator}

\section*{Optical plummet}
\begin{tabular}{lc} 
Magnification & 2 x \\
Shortest sighting distance & 0.5 m
\end{tabular}

\section*{Display screen}

Type
Working range
Accuracy
Clamps and tangent

\section*{screws}

\section*{Keyboard}

7 keys, display oriented, variable key functions

\section*{Measuring menu}
\[
\begin{aligned}
& \mathrm{Hz}-\mathrm{V} / \mathrm{SD}-\mathrm{Hz}-\mathrm{V} / \mathrm{HD}-\mathrm{Hz}-\mathrm{h} / \mathrm{y}-\mathrm{x}-\mathrm{h} \\
& \text { setting, input, adjustment }
\end{aligned}
\]

\section*{Application programs} (supported by graphics)

> Connecting Distances, Object Height + Width, Station + Offset, Vertical Plane, Area Calculation, Stake out Point to Line (orthogonal lines, parallel lines, alignment)

\section*{Trimble 3303DR}

Trimble 3305DR
Trimble 3306DR

\section*{Coordinates programs} (supported by graphics)

\author{
Unknown Station, Known Station, Stationing in elevation, Polar/Detail Points, Stake Out
}

\section*{Recording}
\[
\begin{aligned}
& \text { internal data memory }^{3} \\
& \text { (approx. } 1900 \text { data lines) } \\
& \text { externally via RS } 232 \text { CN24 interface } \\
& \text { switchover in the menu interface/recording, } \\
& \text { slip ring on stationary base }
\end{aligned}
\]

\section*{Power supply}

> NiMH battery pack \(6 \mathrm{~V} / 1.3 \mathrm{Ah}\); sufficient for approx. 1000 angle and distance measurements

\section*{Operating temperatures}
\[
-20^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C}
\]

\section*{Dimensions}

Instrument (WxHxD) \(173 \times 268 \times 193 \mathrm{~mm}\)
Trunnion axis height with
DIN centring spigot/
175 mm
Trimble 3-PIN centring
196 mm

\section*{Weights}

Instrument incl. battery and tribrach
Case

\section*{Electromagnetic Compatibility (EMV)}

Die EU Conformity Declaration confirms the perfect function of the instrument in an electromagnetic environment.
\& Attention!
Computers connected to the rimble 3300DR which are not part of the Trimble System delivery, have to meet the same EMV requirements in order to ensure that the overall configuration complies with the applicable interference suppression standards.

Interference suppression as per:
EN 55011 class B

Noise immunity:
EN 50082-2

\section*{Tip}

Strong magnetic fields generated by mid and low voltage transformer stations possibly exceed the check criteria. Make a plausibility check of the results when measuring on such conditions.

\section*{Single battery Charger}


> Attention!
> Make sure that the input voltage switch reading matches the mains voltage at your location!
> If you connect the charger to 230 V when the voltage selector shows 115 V an internal fuse will blow.
> If you connect the charger to 115 V and it is set for 230 V the red charge led flashes.

This single battery charger is designed for NiCd and NiMH batteries, 5 or 10 cells. Die NiMH Battery of the Trimble 3300DR (6V 1,3 Ah 7025049040000 ) has 5 cells. The charger changes the charging parameters depending on a code resistor in the battery. A micro controller measures the code resistor and the NTC resistor in the battery and changes the maximum voltage and charging time accordingly. It uses the peek voltage method to indicate when the battery is almost fully charged.

To complete the charging it applies a constant top charging current of 100 mA until the maximum charging time timer has run out. Thereafter a pulsating trickle charging current will be applied to the battery as long as it is connected to the charger.

\section*{Low battery voltage}

High battery temperature

To prevent damage to the battery the charger has the following safety functions:
- A maximum charging time timer
- Max and min temperature stop, if the battery becomes to hot or cold. This function requires a NTC resistor in the battery
- Battery over and under voltage detection

If the battery voltage is lower than about 3 V (the Error LED is turned on) the charger starts the charging with 100 mA current until the voltage increase over 3 V . Then normal charging starts. Sometimes battery voltage increase rapidly first and then falls slowly for some time. If this goes on for more then 10 min the charger may interpret this as the battery is already fully charged. The charger stops and has to be restarted.

The battery is equipped with an NTC resistor. The charger monitors the battery temperature with this resistor and stops if the temperature rise above 45 degrees Celsius and the Error led will be turned on. The reason for this may be high ambient temperature or the charger has failed to stop charging and the battery temperature rise due to a fully charged condition.

\section*{Technical Data}

\section*{Charged battery}

\section*{Worn out batteries}

Continues connection to charger

It is not recommended to restart a charging cycle when the charger has indicated \(100 \%\). The charger waits about 10 minutes before it senses the battery condition and repeated restarts can cause a heavy overcharge and damage to the battery.

Old and well-used battery has a higher voltage when charged. If the voltage becomes to high a protection mechanism stops the charging and error will be indicated.

A battery should not be connected to the charger for a prolonged time.

Disconnect the charger from main supply if it not will be used for a long time.

INPUT
\begin{tabular}{|l|l|c|}
\hline & Nominal & Comments \\
\hline Voltage & \(\sim 115 \mathrm{Vac} ; 50 / 60 \mathrm{~Hz}\) & 90 V to 127 V \\
\hline & \(\sim 230 \mathrm{Vac} ; 50 / 60 \mathrm{~Hz}\) & 190 V to 250 V \\
\hline Power & 20 W & \\
\hline
\end{tabular}

OUTPUT
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Reverse polarity \\
protection
\end{tabular} & Max 30 V & \\
\hline
\end{tabular}

CONTROL
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
High \\
temperature \\
stop
\end{tabular} & \(45^{\circ} \mathrm{C}\) & \begin{tabular}{l} 
The charger must be \\
restarted to continue \\
charging
\end{tabular} \\
\hline \begin{tabular}{l} 
Low \\
temperature \\
stop
\end{tabular} & \begin{tabular}{l} 
The charger begins \\
charging when tem- \\
perature becomes \\
higher then \(0^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Technical Data}

\section*{Charging the battery}

\section*{Safety Notes}

\section*{\& Attention!}

Only charge rechargeable Nickel Metal Hydride (NiMH) and Nickel Cadmium (NiCd) chemistry battery packs. Attempts to charge other types of battery may results in explosions.

LED indicator

\begin{tabular}{|l|l|}
\hline No bat. & No battery connected \\
\hline Error & Error see text \\
\hline Charg & Fast charging \\
\hline \(100 \%\) & Battery charged \\
\hline
\end{tabular}

Connect the appropriate power supply cable to the charger and insert it in the power outlet The yellow No Bat led will be turned on.
Chose an appropriate battery cable and insert it at the charger's battery connector. Finally connect the cable to the battery. The yellow No bat led will now be turned off and the red Charge led will be turned on. The charging process has now started and will continue until the charger detects a fully charged battery and the green \(100 \%\) led turns on.
The charging time for the DiNi - Battery is approximately 2 hours and 30 minutes. The charger will time out in 4 hours and 15 minutes.

V angle measurement

Hz bearing measurement
\[
\begin{aligned}
\mathrm{H} \mathbf{z}_{\mathbf{k}} & =\mathbf{H} \mathbf{z}_{\mathbf{o}}+\mathbf{H} \mathbf{z}_{\mathbf{1}}+\mathbf{A} \\
\mathrm{H} z_{\mathrm{O}} & =\text { uncorrected } \mathrm{Hz} \text { circle reading } \\
\mathrm{Hz}_{1} & =\mathrm{c} / \sin (V k) \text { - collimation correction } \\
\mathrm{A} & =\text { circle adjustment for orientation }
\end{aligned}
\]

Computational Formulae for Distance Measurements
\(D_{k}=D_{0} \cdot M_{i}+A\)
\(\mathrm{D}_{\mathrm{k}}=\) corrected distance
\(D_{0}=\) uncorrected distance
A = addition constant
\(\mathrm{M}_{\mathrm{i}}=\) influence of meteorological data
Influence of meteorological data:
\(M_{i}=\left(1+\left(n_{0}-n\right) 10^{-6}\right) \cdot\left(1+(a \cdot T \cdot T) 10^{-6}\right)\)
n = current refractive index
\(=(79.146 \cdot P) /(272.479+T)\)
\(\mathrm{n}_{0}=\) reference refractive index \(=255\)
\(\mathrm{P}=\) air pressure in hPa or torr or in Hg
\(T=\) temperature in degrees \(C\) or degrees \(F\)
a = coefficient of vapour pressure correction
\(=0.001\)
carrier wavelength 0.86 microns
modulation wavelength 20 m
precision scale 10 m

Slope distance SD
Distance between the instrument's trunnion axis and the prism. It is computed from the measured slope distance and the entered scale:
\(S D=D_{k} \cdot M\)
\(S D=\) displayed slope distance
\(\mathrm{D}_{\mathrm{k}}=\) basic distance
\(\mathrm{M}=\) scale

Horizontal distance HD
\(H D=\left(E_{1}+E_{2}\right) \cdot M\)
\(H D=\) displayed horizontal distance
\(E_{1}=D_{k} \cdot \sin (Z+R)\)
\(R=\) influence of refraction
\[
=6.5 \cdot 10^{-7} \cdot D_{k} \cdot \sin (Z)
\]
\(E_{2}=\) influence of earth curvature
\[
=-1.5710^{-7} \cdot d h \cdot D_{k} \cdot \sin (Z)
\]
\(\mathrm{D}_{\mathrm{k}}=\) corrected slope distance
Z = measured zenith angle [grads]
\(M=\) scale

Difference in elevation \(h\)
\[
\begin{aligned}
& \mathrm{h}=\mathrm{dh}_{1}+\mathrm{dh} \\
& \mathrm{~h} \\
& \mathrm{~h}=\text { displayed difference in elevation } \\
& \mathrm{dh}_{1}=\mathrm{Dk} \cdot \cos (\mathrm{Z}) \\
& \mathrm{dh}_{2}=(\mathrm{Dk} \cdot \sin (Z)) \cdot(\mathrm{Dk} \cdot \sin (Z)) 6.8 \cdot 10^{-8} \\
& \quad=\text { influence of earth curvature and refraction } \\
& \quad(\mathrm{k}=0.13)
\end{aligned}
\]

Distance reduction to MSL
Distances measured at elevation Z can be reduced to MSL by computing the following scale outside the instrument (computation formula applies to all earth radii):
\(m=R / R+Z\)
\(S_{2}=S_{1} \cdot m\)
\(R \quad=\) earth radius ( 6370 Km )
Z = elevation above MSL (Km )
\(\mathrm{S}_{1} \quad=\) measured distance at elevation Z
\(\mathrm{S}_{2}=\) reduced distance at MSL
If this scale is entered into the Trimble 3300DR, the computed distances are reduced directly in the instrument.

\section*{Verifying on Calibration Distances}

Basically, all measured distances are corrected with reference to:
the entered scale, the entered addition constant, the influence of pressure and temperature, internal influencing variables.

> Attention!
> Prior to the practical realisation of the calibration measurement, the current values of the parameters scale, addition constant, pressure and temperature are to be entered. The scale is to be set to default: 1.000000 . This is to secure that all corrections are made completely and perfectly. Furthermore, this allows a direct comparison of nominal and actual values in the case of given distances.

If a weather correction is to be carried out externally, the temperature must be set to \(20^{\circ} \mathrm{C}\) and the air pressure to 944 hPa . Then, the internal correction goes to zero.

All Trimble Total Stations of the former Zeiss Elta series, in combination with their reflectors are adjusted with the addition constant \(\mathbf{0 . 0 0 0}\).

In case of measurements to reflectors of other manufacturers, a possibly existing addition constant can be determined.

Another possibility consists in calculating an addition constant by means of the known prism constant of the reflector used. This prism constant is calculated as function of the geometric value of the prism, the type of glass and the place of the mechanical reference point. The prism constant for former Zeiss reflectors determined that way is -35 mm.

Relation between the addition constant Acz for former Zeiss instruments, the prism constant Pcz for former Zeiss reflectors and the prism constant \(\mathrm{P}_{\mathrm{f}}\) for other manufacturers reflectors:
\[
A_{C Z}=P_{F}-P_{\square}
\]

Example:
Zeiss reflector prism constant
\begin{tabular}{cl}
\(P_{C Z}\) & \(=-35 \mathrm{~mm}\) \\
Foreign reflector & prism constant \\
\(P_{F}\) & \(=-30 \mathrm{~mm}\)
\end{tabular}

Addition constant for former Zeiss Elta instruments in connection with this foreign reflector \(\quad A_{C Z}=+5 \mathrm{~mm}\)
In this case, in the Trimble 3300DR the addition constant is computed:+ 0.005 m .

\section*{Error Message}
\begin{tabular}{|ll|}
\hline 001 & ROM error \\
002 & RAM error \\
003 & Data EEPROM \\
005 & \begin{tabular}{l} 
was initialised \\
Data EEPROM \\
error
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|ll|}
\hline 040 & Error in \\
059 & dist. measuring unit \\
\hline
\end{tabular}
\begin{tabular}{|ll|}
\hline 201 & No Compensator \\
202 & \begin{tabular}{l} 
Compensator \\
oper. range exceeded
\end{tabular} \\
203 & No Compensator-Value \\
204 & No Angle Sensor \\
205 & \begin{tabular}{l} 
No Initialisation \\
206
\end{tabular} \\
\begin{tabular}{l} 
No Angle Sensor
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|ll}
\hline 207 & \begin{tabular}{l} 
Data-EEPROM \\
Error in writing
\end{tabular} \\
208 & \begin{tabular}{l} 
Data-EEPROM \\
Error in writing
\end{tabular} \\
209 & \begin{tabular}{l} 
Data-EEPROM \\
Error in reading \\
210
\end{tabular} \\
\begin{tabular}{l} 
Daten-EEPROM \\
Error in reading
\end{tabular}
\end{tabular}

\section*{What to do?}

It is not advisable to continue the measurement as all basic settings of the instrument may have been changed.

If this error occurs repeatedly, please inform the service.

042 - Ambiguity \({ }^{1}\)
Time Out in contact with the Compensator
Call the service
Compensator range of 5 ' exceeded

No measurement possible - instrument inclination to big

Time Out in contact with the angle sensor Call the service

No Initialisation of the angle sensor
Call the service
No angle measurement possible, to fast movement in angle tracking
The digits are replaced by dashes

Error in reading or writing EEPROM of the angle sensor or compensator
It is possible that there are changed important settings
Call the service
\begin{tabular}{|ll|}
\hline 211 & Error Communication \\
212 & Error Communication \\
\hline
\end{tabular}
\begin{tabular}{|ll|}
\hline 410 & \begin{tabular}{l} 
MEM not \\
initialised!
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|ll|}
\hline \(411 /\) & Defect in \\
412 & system area \\
\hline
\end{tabular}
\begin{tabular}{|cl|}
\hline 413 & \begin{tabular}{l} 
Defect in system \\
area, reading is \\
possible
\end{tabular} \\
415 & MEM reading error \\
416 & MEM writing error
\end{tabular}

417 MEM is full

418 Pointcode or Point-
419 number not found

\section*{581 Transmission error (in data transmission)}

584 Transmission time out (in XON/XOFF protocol)
Transmission time out (in XON/XOFF Rec 500 protocol)
l/O time out, Rec 500 protocol
588 REC 500 protocol error

Error in communication with the angle sensor or compensator, call the service

Initialisation can only be performed by service staff

Work with the data memory is not possible, call the service

In the event of error messages 413...416, try to save the content of the data memory by transmission to the PC. If the error occurs again when recording is repeated, call the service.

Read out the memory content, delete the memory.

Correct the entry.

If the general recording errors 518... 588 occur, first try to repeat recording. If the error occurs again, check the interface parameters, the cable and the recording program at the other end.
\({ }^{1}\) Warning could appear while target is moving during measurement or doing measurment at distances longer than 300 m and shorter than \(1,5 \mathrm{~m}\) in DR mode to prisms or high reflective surfaces.

\section*{Tip}

If the warning "inadequate geometrical conditions" is ignored in the application programs, the last digit of the displayed values is replaced by 3 dots.
If a recording error occurs, the last data line has usually not been transmitted.

Before you call the service
Before you contact the service please notice the following service menu information. This information is very important to analyse the instrument errors.

\section*{ON MENU}

\section*{Update/Service}

YES Go to Menu



\section*{Instructions for Maintenance and Care}
Instrument
Object lens and eyepiece

Prisms

Transportation

\section*{Storage}

Allow sufficient time for the instrument to adjust to the ambient temperature.

Use a soft cloth to remove dirt and dust from the instrument.

When working in wet weather or rain, cover the instrument during longer breaks with the protective hood.

Clean the optics with special care using a clean and soft cloth, cotton wool or a soft brush, do not use any liquid except pure alcohol.

Do not touch the optical surface with the fingers.
Steamed prisms must have sufficient time to adjust to the ambient temperature. Remove afterwards the moisture using a clean and soft cloth.

For transportation over long distances, the instrument should be stored in its case.

When working in wet weather, wipe the instrument and case dry in the field and let it dry completely indoors, with the case open.

If, for the purpose of changing the station, the instrument with the tripod is transported on the shoulder, please make sure that instrument and person will not be damaged or injured.
Let wet instruments and accessories dry before packing them up.
After a long storage, check the adjustment of the instrument prior to use.

Observe the boundary values for the temperature of storing, especially in the summer (interior of the vehicle).

\section*{Keeping the Measurement System in the Case}


Fig. 1: Instrument case

1 Protective hood
2 Adjusting tools:
Pin for adjusting the optical plummet, Pin for adjusting the clamping power of the tripod legs
3 Instrument
4 Battery
5 Plumb line
6 Operating instructions

For surveying in extreme climatic conditions, a special version of the instrument series Trimble 3300 suitable for an extended temperature range to \(-35^{\circ}\) is available, broadening the operative range of the Routine Total Stations considerably as far as seasons and geographical features are concerned.

Due to the heated display, the instrument works just as in the normal temperature range. The required heating energy is provided by the external battery.

For operation in low temperatures run the instrument from the external battery.

The instrument is automatic power from the external battery after connecting to the instrument. Disconnecting the external battery the instrument does switch over automatically to the internal battery.

The heating switches on automatically at about \(-10^{\circ} \mathrm{C}\).if the instrument is connected with the external battery.

The external battery provides energy for about 8 hours at \(-35^{\circ} \mathrm{C}\).

\title{
rimble
}
Trimble Engineering and Construction Division
5475 Kellenburger Road
Dayton, Ohio 45424
U.S.A.
800-538-7800 (Toll Free in U.S.A.)
+ 1.937-233-8921 Phone
+ 1.937-233-9004 Fax```


[^0]:    ${ }^{1}$ topography

